熵权法、主客观权重及matlab应用

1.熵权法确定客观权重

熵学理论最早产生于物理学家对热力学的研究,熵的概念最初描述的是一种单项流动、不可逆转的能量传递过程,随着思想和理论的不断深化和发展,后来逐步形成了热力学熵、统计熵、信息熵三种思路。信息熵方法用来确定权重己经非常广泛地应用于工程技术、社会经济等各领域。

由信息熵的基本原理可知,对于一个系统来说,信息和熵分别是其有序程度和无序程度的度量,二者的符号相反、绝对值相等。假设一个系统可能处于不同状态,每种状态出现的概率为Pi(i=1,……,n)
则该系统的熵就定义为:
在这里插入图片描述
在决策中,决策者获得信息的多少是决策结果可靠性和精度的决定性因素之一,然而,在多属性决策过程中,往往可能出现属性权重大小与其所传达的有价值的信息多少不成正比的情况。例如:某一指标所占的权重在所有指标中最大,但在整个决策矩阵中,这一指标所有方案的数值却相差甚微,即这一指标所传递的有用信息较少。显然,这一最重要的指标在决策过程中所起的作用却很小,如果不对其属性权重进行适当的处理,必将会造成评价决策方案的失真。
熵本身所具有的物理意义及特性决定其应用在多属性决策上是一个很理想的尺度。某项指标之间值的差距越大,区分度越高,所携带和传输的信息就越多,该指标的熵值就会越小,在总体评价中起到的作用越大;相反,某项指标之间值的差距越小,区分度越低,所携带和传输的信息就越少,该指标的熵值就会越大,在总体评价中起到的作用越小。因此,可采用计算偏差度的方法求出客观权重,再利用客观权重对专家评价出的主观权重进行修正,得出综合权重。
与其他客观赋权方法相比,该方法不仅仅是建立在概率的基础之上,还以决策者预先确定的偏好系数为基础,把决策者的主观判断和待评价对象的固有信息有机地结合起来,实现了主观与客观的统一,得出的权值准确性更高。
对m 个方案、n 个属性构成的决策矩阵,求解权重向量的基本步骤如下:
(1)计算在 j 属性下,第 i 个方案的贡献度

你可能感兴趣的:(多属性决策及matlab应用)