DTS1

 

一.什么是DTS?为什么要引入DTS?

 

DTS即Device Tree Source 设备树源码, Device Tree是一种描述硬件的数据结构,它起源于 OpenFirmware (OF)。

在Linux 2.6中,ARM架构的板极硬件细节过多地被硬编码在arch/arm/plat-xxx和arch/arm/mach-xxx,比如板上的 platform设备、resource、i2c_board_info、spi_board_info以及各种硬件的platform_data,这些 板级细节代码对内核来讲只不过是垃圾代码。而采用Device Tree后,许多硬件的细节可以直接透过它传递给Linux,而不再需要在kernel中进行大量的冗余编码。

每次正式 的linux kernel release之后都会有两周的merge window,在这个窗口期间,kernel各个部分的维护者都会提交各自的patch,将自己测试稳定的代码请求并入kernel main line。每到这个时候,Linus就会比较繁忙,他需要从各个内核维护者的分支上取得最新代码并merge到自己的kernel source tree中。Tony Lindgren,内核OMAP development tree的维护者,发送了一个邮件给Linus,请求提交OMAP平台代码修改,并给出了一些细节描述:

       1)简单介绍本次改动

       2)关于如何解决merge conficts。有些git mergetool就可以处理,不能处理的,给出了详细介绍和解决方案

       一切都很平常,也给出了足够的信息,然而,正是这个pull request引发了一场针对ARM linux的内核代码的争论。我相信Linus一定是对ARM相关的代码早就不爽了,ARM的merge工作量较大倒在其次,主要是他认为ARM很多的代 码都是垃圾,代码里面有若干愚蠢的table,而多个人在维护这个table,从而导致了冲突。因此,在处理完OMAP的pull request之后(Linus并非针对OMAP平台,只是Tony Lindgren撞在枪口上了),他发出了怒吼:

     Gaah.Guys, this whole ARM thing is a f*cking pain in the ass.

 

之后经过一些讨论,对ARM平台的相关code做出如下相关规范调整,这个也正是引入DTS的原因。

1、ARM的核心代码仍然保存在arch/arm目录下

2、ARM SoC core architecture code保存在arch/arm目录下

3、ARM SOC的周边外设模块的驱动保存在drivers目录下

4、ARM SOC的特定代码在arch/arm/mach-xxx目录下

5ARM SOC board specific的代码被移除,由DeviceTree机制来负责传递硬件拓扑和硬件资源信息。

本质上,Device Tree改变了原来用hardcode方式将HW 配置信息嵌入到内核代码的方法,改用bootloader传递一个DB的形式。

如果我们认为kernel是一个black box,那么其输入参数应该包括:

a.识别platform的信息  b.runtime的配置参数  c.设备的拓扑结构以及特性

对于嵌入式系统,在系统启动阶段,bootloader会加载内核并将控制权转交给内核,此外,还需要把上述的三个参数信息传递给kernel,以便kernel可以有较大的灵活性。在linux kernel中,Device Tree的设计目标就是如此。

 

二.DTS基本知识

1.DTS的加载过程

如果要使用Device Tree,首先用户要了解自己的硬件配置和系统运行参数,并把这些信息组织成Device Tree source file。通过DTC(Device Tree Compiler),可以将这些适合人类阅读的Device Tree source file变成适合机器处理的Device Tree binary file(有一个更好听的名字,DTB,device tree blob)。在系统启动的时候,boot program(例如:firmware、bootloader)可以将保存在flash中的DTB copy到内存(当然也可以通过其他方式,例如可以通过bootloader的交互式命令加载DTB,或者firmware可以探测到device的信 息,组织成DTB保存在内存中),并把DTB的起始地址传递给client program(例如OS kernel,bootloader或者其他特殊功能的程序)。对于计算机系统(computer system),一般是firmware->bootloader->OS,对于嵌入式系统,一般是bootloader->OS。

 

2.DTS的描述信息

Device Tree由一系列被命名的结点(node)和属性(property)组成,而结点本身可包含子结点。所谓属性,其实就是成对出现的name和 value。在Device Tree中,可描述的信息包括(原先这些信息大多被hard code到kernel中):

CPU的数量和类别

内存基地址和大小

总线和桥

外设连接

中断控制器和中断使用情况

GPIO控制器和GPIO使用情况

Clock控制器和Clock使用情况

       它基本上就是画一棵电路板上CPU、总线、设备组成的树,Bootloader会将这棵树传递给内核,然后内核可以识别这棵树,并根据它展开出Linux 内核中的platform_device、i2c_client、spi_device等设备,而这些设备用到的内存、IRQ等资源,也被传递给了内核, 内核会将这些资源绑定给展开的相应的设备。

是否 Device Tree要描述系统中的所有硬件信息?答案是否定的。基本上,那些可以动态探测到的设备是不需要描述的,例如USB device。不过对于SOC上的usb hostcontroller,它是无法动态识别的,需要在device tree中描述。同样的道理,在computersystem中,PCI device可以被动态探测到,不需要在device tree中描述,但是PCI bridge如果不能被探测,那么就需要描述之。

.dts文件是一种ASCII 文本格式的Device Tree描述,此文本格式非常人性化,适合人类的阅读习惯。基本上,在ARM Linux在,一个.dts文件对应一个ARM的machine,一般放置在内核的arch/arm/boot/dts/目录。 由于一个SoC可能对应多个machine(一个SoC可以对应多个产品和电路板),势必这些.dts文件需包含许多共同的部分,Linux内核为了简 化,把SoC公用的部分或者多个machine共同的部分一般提炼为.dtsi,类似于C语言的头文件。其他的machine对应的.dts就 include这个.dtsi。譬如,对于RK3288而言, rk3288.dtsi就被rk3288-chrome.dts所引用,rk3288-chrome.dts有如下一行:#include“rk3288.dtsi”

对于rtd1195,在 rtd-119x-nas.dts中就包含了/include/ "rtd-119x.dtsi"
当然,和C语言的头文件类似,.dtsi也可以include其他的.dtsi,譬如几乎所有的ARM SoC.dtsi都引用了skeleton.dtsi,即#include"skeleton.dtsi

或者 /include/ "skeleton.dtsi"

 

正常情况下所有的dts文件以及dtsi文件都含有一个根节点”/”,这样include之后就会造成有很多个根节点? 按理说 device tree既然是一个树,那么其只能有一个根节点,所有其他的节点都是派生于根节点的child node.

其实Device Tree Compiler会对DTS的node进行合并,最终生成的DTB中只有一个 root  node.  

   device tree的基本单元是node。这些node被组织成树状结构,除了root node,每个node都只有一个parent。一个device tree文件中只能有一个root node。每个node中包含了若干的property/value来描述该node的一些特性。每个node用节点名字(node name)标识,节点名字的格式是node-name@unit-address。如果该node没有reg属性(后面会描述这个 property),那么该节点名字中必须不能包括@和unit-address。unit-address的具体格式是和设备挂在那个bus上相关。例 如对于cpu,其unit-address就是从0开始编址,以此加一。而具体的设备,例如以太网控制器,其unit-address就是寄存器地址。 root node的node name是确定的,必须是“/”。

在一个树状结构的device tree中,如何引用一个node呢?要想唯一指定一个node必须使用full path,例如/node-name-1/node-name-2/node-name-N。 

3.DTS的组成结构

[objc] view plain copy

  1. / {    
  2.     node1 {    
  3.         a-string-property = "A string";    
  4.         a-string-list-property = "first string", "second string";    
  5.         a-byte-data-property = [0x01 0x23 0x34 0x56];    
  6.         child-node1 {    
  7.             first-child-property;    
  8.             second-child-property = <1>;    
  9.             a-string-property = "Hello, world";    
  10.         };    
  11.         child-node2 {    
  12.         };    
  13.     };    
  14.     node2 {    
  15.         an-empty-property;    
  16.         a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */    
  17.         child-node1 {    
  18.         };    
  19.     };    
  20. };   

 

上述.dts文件并没有什么真实的用途,但它基本表征了一个Device Tree源文件的结构:
1个root结点"/";
root结点下面含一系列子结点,本例中为"node1"和 "node2";
结点"node1"下又含有一系列子结点,本例中为"child-node1"和 "child-node2";
各结点都有一系列属性。这些属性可能为空,如"an-empty-property";可能为字符串,如"a-string-property";可能为 字符串数组,如"a-string-list-property";可能为Cells(由u32整数组成),如"second-child- property",可能为二进制数,如"a-byte-data-property"。

下面以一个最简单的machine为例来看如何写一个.dts文件。假设此machine的配置如下:
1个双核ARM Cortex-A9 32位处理器;
ARM的local bus上的内存映射区域分布了2个串口(分别位于0x101F1000 和 0x101F2000)、GPIO控制器(位于0x101F3000)、SPI控制器(位于0x10115000)、中断控制器(位于 0x10140000)和一个external bus桥;
External bus桥上又连接了SMC SMC91111 Ethernet(位于0x10100000)、I2C控制器(位于0x10160000)、64MB NOR Flash(位于0x30000000);
External bus桥上连接的I2C控制器所对应的I2C总线上又连接了Maxim DS1338实时钟(I2C地址为0x58)。
其对应的.dts文件为:

[objc] view plain copy

  1. / {    
  2.     compatible = "acme,coyotes-revenge";    
  3.     #address-cells = <1>;    
  4.     #size-cells = <1>;    
  5.     interrupt-parent = <&intc>;    
  6.     
  7.     cpus {    
  8.         #address-cells = <1>;    
  9.         #size-cells = <0>;    
  10.         cpu@0 {    
  11.             compatible = "arm,cortex-a9";    
  12.             reg = <0>;    
  13.         };    
  14.         cpu@1 {    
  15.             compatible = "arm,cortex-a9";    
  16.             reg = <1>;    
  17.         };    
  18.     };    
  19.     
  20.     serial@101f0000 {    
  21.         compatible = "arm,pl011";    
  22.         reg = <0x101f0000 0x1000 >;    
  23.         interrupts = < 1 0 >;    
  24.     };    
  25.     
  26.     serial@101f2000 {    
  27.         compatible = "arm,pl011";    
  28.         reg = <0x101f2000 0x1000 >;    
  29.         interrupts = < 2 0 >;    
  30.     };    
  31.     
  32.       
  33.   
  34. gpio@101f3000 {    
  35.         compatible = "arm,pl061";    
  36.         reg = <0x101f3000 0x1000    
  37.                0x101f4000 0x0010>;    
  38.         interrupts = < 3 0 >;    
  39.     };    
  40.     
  41.     intc: interrupt-controller@10140000 {    
  42.         compatible = "arm,pl190";    
  43.         reg = <0x10140000 0x1000 >;    
  44.         interrupt-controller;    
  45.         #interrupt-cells = <2>;    
  46.     };    
  47.     
  48.     spi@10115000 {    
  49.         compatible = "arm,pl022";    
  50.         reg = <0x10115000 0x1000 >;    
  51.         interrupts = < 4 0 >;    
  52.     };    
  53.     
  54.   
  55.   
  56. external-bus {    
  57.         #address-cells = <2>    
  58.         #size-cells = <1>;    
  59.         ranges = <0 0  0x10100000   0x10000     // Chipselect 1, Ethernet    
  60.                           1 0  0x10160000   0x10000     // Chipselect 2, i2c controller    
  61.                           2 0  0x30000000   0x1000000>; // Chipselect 3, NOR Flash    
  62.     
  63.         ethernet@0,0 {    
  64.             compatible = "smc,smc91c111";    
  65.             reg = <0 0 0x1000>;    
  66.             interrupts = < 5 2 >;    
  67.         };    
  68.     
  69.         i2c@1,0 {    
  70.             compatible = "acme,a1234-i2c-bus";    
  71.             #address-cells = <1>;    
  72.             #size-cells = <0>;    
  73.             reg = <1 0 0x1000>;    
  74.             rtc@58 {    
  75.                 compatible = "maxim,ds1338";    
  76.                 reg = <58>;    
  77.                 interrupts = < 7 3 >;    
  78.             };    
  79.         };    
  80.     
  81.         flash@2,0 {    
  82.             compatible = "samsung,k8f1315ebm", "cfi-flash";    
  83.             reg = <2 0 0x4000000>;    
  84.         };    
  85.     };    
  86. };   



上 述.dts文件中,root结点"/"的compatible 属性compatible = "acme,coyotes-revenge";定义了系统的名称,它的组织形式 为:,。Linux内核透过root结点"/"的compatible 属性即可判断它启动的是什么machine。

.dts文件的每个设备,都有一个compatible属性,compatible属性用户驱动和设备的绑定。compatible 属性是一个字符串的列表,列表中的第一个字符串表征了结点代表的确切设备,形式为",",其后的字符串表征可兼容的其他设备。可以说前面的是特指,后面的则涵盖更广的范围

如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash结点:

[objc] view plain copy

  1. flash@0,00000000 {    
  2.      compatible = "arm,vexpress-flash", "cfi-flash";    
  3.      reg = <0 0x00000000 0x04000000>,    
  4.      <1 0x00000000 0x04000000>;    
  5.      bank-width = <4>;    
  6.  };   


compatible属性的第2个字符串"cfi-flash"明显比第1个字符串"arm,vexpress-flash"涵盖的范围更广。

接下来root结点"/"的cpus子结点下面又包含2个cpu子结点,描述了此machine上的2个CPU,并且二者的compatible 属性为"arm,cortex-a9"。
注意cpus和cpus的2个cpu子结点的命名,它们遵循的组织形式为:[@],<>中的内容是必选项,[]中的则为可选项。name是一个ASCII字符串,用于描述结点对应的设备类型,如 3com Ethernet适配器对应的结点name宜为ethernet,而不是3com509。如果一个结点描述的设备有地址,则应该给出@unit-address。多个相同类型设备结点的name可以一样,只要unit-address不同即可,如本例中含有cpu@0、cpu@1以及serial@101f0000与serial@101f2000这样的同名结点。设备的unit-address地址也经常在其对应结点的reg属性中给出。

reg的组织形式为reg = ,其中的每一组addresslength表明了设备使用的一个地址范围address1个或多个32位的整型cell),length则为cell的列表或者为空#size-cells = 0addresslength字段是可变长的,父结点的#address-cells#size-cells分别决定了子结点的reg属性的addresslength字段的长度。

 

在本例 中,root结点的#address-cells = <1>;和#size-cells =<1>;决定了serial、gpio、spi等结点的address和length字段的长度分别为1。cpus 结点的#address-cells= <1>;和#size-cells =<0>;决定了2个cpu子结点的address为1,而length为空,于是形成了2个cpu的reg =<0>;和reg =<1>;。external-bus结点的#address-cells= <2>和#size-cells =<1>;决定了其下的ethernet、i2c、flash的reg字段形如reg = <0 00x1000>;、reg = <1 00x1000>;和reg = <2 00x4000000>;。其中,address字段长度为0,开始的第一个cell(0、1、2)是对应的片选,第2个cell(0,0,0)是 相对该片选的基地址,第3个cell(0x1000、0x1000、0x4000000)为length。特别要留意的是i2c结点中定义的 #address-cells = <1>;和#size-cells =<0>;又作用到了I2C总线上连接的RTC,它的address字段为0x58,是设备的I2C地址。

root 结点的子结点描述的是CPU的视图,因此root子结点的address区域就直接位于CPU的memory区域。但是,经过总线桥后的address往 往需要经过转换才能对应的CPU的memory映射。external-bus的ranges属性定义了经过external-bus桥后的地址范围如何 映射到CPU的memory区域。

[objc] view plain copy

  1. ranges = <0 0  0x10100000   0x10000          // Chipselect 1, Ethernet    
  2.           1 0  0x10160000   0x10000         // Chipselect 2, i2c controller    
  3.           2 0  0x30000000   0x1000000>;      // Chipselect 3, NOR Flash  


ranges 是地址转换表,其中的每个项目是一个子地址、父地址以及在子地址空间的大小的映射。映射表中的子地址、父地址分别采用子地址空间的#address- cells和父地址空间的#address-cells大小。对于本例而言,子地址空间的#address-cells为2,父地址空间 的#address-cells值为1,因此0 0  0x10100000   0x10000的前2个cell为external-bus后片选0上偏移0,第3个cell表示external-bus后片选0上偏移0的地址空间被 映射到CPU的0x10100000位置,第4个cell表示映射的大小为0x10000。ranges的后面2个项目的含义可以类推。

Device Tree中还可以中断连接信息,对于中断控制器而言,它提供如下属性:
interrupt-controller– 这个属性为空,中断控制器应该加上此属性表明自己的身份;
#interrupt-cells– 与#address-cells 和 #size-cells相似,它表明连接此中断控制器的设备的interrupts属性的cell大小。
在整个Device Tree中,与中断相关的属性还包括:
interrupt-parent– 设备结点透过它来指定它所依附的中断控制器的phandle,当结点没有指定interrupt-parent时,则从父级结点继承。对于本例而 言,root结点指定了interrupt-parent= <&intc>;其对应于intc: interrupt-controller@10140000,而root结点的子结点并未指定interrupt-parent,因此它们都继承了 intc,即位于0x10140000的中断控制器。

        interrupts – 用到了中断的设备结点透过它指定中断号、触发方法等,具体这个属性含有多少个cell,由它依附的中断控制器结点的#interrupt-cells属性 决定。而具体每个cell又是什么含义,一般由驱动的实现决定,而且也会在Device Tree的binding文档中说明。

譬如,对于ARM GIC中断控制器而言,#interrupt-cells为3,它3个cell的具体含义kernel/Documentation/devicetree/bindings/arm/gic.txt就有如下文字说明:

 

PPI(Private peripheral interrupt)    SPI(Shared peripheral interrupt)

一个设备 还可能用到多个中断号。对于ARM GIC而言,若某设备使用了SPI的168、169号2个中断,而言都是高电平触发,则该设备结点的interrupts属性可定义 为:interrupts =<0 168 4>, <0 169 4>; 

4.dts引起BSP和driver的变更  

没有使用dts之前的BSP和driver 

 

 

 

使用dts之后的driver

 

 

 

针对上面的dts,注意一下几点:

1).rtk_gpio_ctl_mlk这个是node的名字,自己可以随便定义,当然最好是见名知意,可以通过驱动程序打印当前使用的设备树节点

        printk(“now dts node name is %s\n",pdev->dev.of_node->name);

2). compatible选项是用来和驱动程序中的of_match_table指针所指向的of_device_id结构里的compatible字段匹配 的,只有dts里的compatible字段的名字和驱动程序中of_device_id里的compatible字段的名字一样,驱动程序才能进入 probe函数

3).对 于gpios这个字段,首先&rtk_iso_gpio指明了这个gpio是连接到的是rtk_iso_gpio,接着那个8是gpio number偏移量,它是以rtk_iso_gpiobase为基准的,紧接着那个0说明目前配置的gpio number 是设置成输入input,如果是1就是设置成输出output.最后一个字段1是指定这个gpio 默认为高电平,如果是0则是指定这个gpio默认为低电平

4).如 果驱动里面只是利用compatible字段进行匹配进入probe函数,那么gpios 可以不需要,但是如果驱动程序里面是采用设备树相关的方法进行操作获取gpio  number,那么gpios这个字段必须使用。 gpios这个字段是由of_get_gpio_flags函数

默认指定的name.

获取gpio number的函数如下:

of_get_named_gpio_flags()

of_get_gpio_flags()    

注册i2c_board_info,指定IRQ等板级信息。

形如

[objc] view plain copy

  1. static struct i2c_board_info __initdata afeb9260_i2c_devices[] = {  
  2.       {  
  3.                I2C_BOARD_INFO("tlv320aic23", 0x1a),    
  4.       }, {  
  5.                I2C_BOARD_INFO("fm3130", 0x68),  
  6.      }, {  
  7.                I2C_BOARD_INFO("24c64", 0x50),  
  8.      }  
  9.  };  

 

 之类的i2c_board_info代码,目前不再需要出现,现在只需要把tlv320aic23、fm3130、24c64这些设备结点填充作为相应的I2C controller结点的子结点即可,类似于前面的

[objc] view plain copy

  1. i2c@1,0 {  
  2.    compatible = "acme,a1234-i2c-bus";    
  3.    …    
  4.    rtc@58 {  
  5.        compatible = "maxim,ds1338";  
  6.        reg = <58>;  
  7.        interrupts = < 7 3 >;  
  8.    };  
  9.   };   

 

Device Tree中的I2C client会透过I2C host驱动的probe()函数中调用of_i2c_register_devices(&i2c_dev->adapter);被自动展开。

 

5.常见的DTS 函数

Linux内核中目前DTS相关的函数都是以of_前缀开头的,它们的实现位于内核源码的drivers/of下面

 void __iomem*of_iomap(struct device_node *node, int index)

 通过设 备结点直接进行设备内存区间的 ioremap(),index是内存段的索引。若设备结点的reg属性有多段,可通过index标示要ioremap的是哪一段,只有1段的情 况,index为0。采用Device Tree后,大量的设备驱动通过of_iomap()进行映射,而不再通过传统的ioremap。

[objc] view plain copy

  1. int of_get_named_gpio_flags(struct device_node *np,const charchar *propname,  
  2.               int index, enum of_gpio_flags *flags)  
  3.   
  4. static inline int of_get_gpio_flags(structdevice_node *np, int index,  
  5.               enum of_gpio_flags *flags)  
  6. {                    
  7.               return of_get_named_gpio_flags(np, "gpios", index,flags);  
  8. }  

 

从设备树中读取相关GPIO的配置编号和标志,返回值为 gpio number

6.DTC (device tree compiler)

     将.dts 编译为.dtb的工具。DTC的源代码位于内核的scripts/dtc目录,在Linux内核使能了Device Tree的情况下,编译内核的时候主机工具dtc会被编译出来,对应scripts/dtc/Makefile中的“hostprogs-y := dtc”这一hostprogs编译target。
在Linux内核的arch/arm/boot/dts/Makefile中,描述了当某种SoC被选中后,哪些.dtb文件会被编译出来,如与VEXPRESS对应的.dtb包括:
 

[objc] view plain copy

  1. dtb-$(CONFIG_ARCH_VEXPRESS) += vexpress-v2p-ca5s.dtb \  
  2.          vexpress-v2p-ca9.dtb \  
  3.          vexpress-v2p-ca15-tc1.dtb \  
  4.          vexpress-v2p-ca15_a7.dtb \  
  5.          xenvm-4.2.dtb  

 

在 Linux下,我们可以单独编译Device Tree文件。当我们在Linux内核下运行make dtbs时,若我们之前选择了ARCH_VEXPRESS,上述.dtb都会由对应的.dts编译出来。因为arch/arm/Makefile中含有一 个dtbs编译target项目。

你可能感兴趣的:(嵌入式,Linux)