手上有个4MB的SPI接口的Nor Flash芯片,很早之前就想在Linux上调试一把了,今天花了一上午的时间终于搞定了,其实蛮简单的,因为内核已经support了这款芯片,所以也没花多少时间。
1.先看SPI Nor Flash的硬件接口:
我的板子是标准SPI,那么这里就多出来了2个PIN需要处理,WP和HOLD脚,先看Spec说明:
如上WP是低电平有效,也就是说要为高电平才能正常操作芯片
那么简单了,只需要将HOLD和WP和VCC(3.3V)接在一起就OK了
2. 代码编写
Linux内核中本身也是支持winbond的flash芯片的,其中也有例程代码:
drivers\mtd\devices\m25p80.c
而我们只需要参照这个文件改下即可,如下是我的代码:
drivers\mtd\devices\w25q32jv.c
/*
* MTD SPI driver for ST w25qxx (and similar) serial flash chips
*
* Author: Mike Lavender, [email protected]
*
* Copyright (c) 2005, Intec Automation Inc.
*
* Some parts are based on lart.c by Abraham Van Der Merwe
*
* Cleaned up and generalized based on mtd_dataflash.c
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MAX_CMD_SIZE 6
#define SPI_TRANSFER_TEST
#ifdef SPI_TRANSFER_TEST
#include
#include
struct w25q {
struct spi_device *spi;
struct device *dev;
struct spi_nor spi_nor;
u8 command[MAX_CMD_SIZE];
char *rx_buffer;
int rx_len;
char *tx_buffer;
int tx_len;
int speed_hz;
};
static unsigned bufsiz = 4096;
struct w25q* W25Q = NULL;
#else
struct w25q {
struct spi_device *spi;
struct spi_nor spi_nor;
u8 command[MAX_CMD_SIZE];
};
#endif
static int w25q32jv_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
{
struct w25q *flash = nor->priv;
struct spi_device *spi = flash->spi;
int ret;
ret = spi_write_then_read(spi, &code, 1, val, len);
if (ret < 0)
dev_err(&spi->dev, "error %d reading %x\n", ret, code);
return ret;
}
static void w25q_addr2cmd(struct spi_nor *nor, unsigned int addr, u8 *cmd)
{
/* opcode is in cmd[0] */
cmd[1] = addr >> (nor->addr_width * 8 - 8);
cmd[2] = addr >> (nor->addr_width * 8 - 16);
cmd[3] = addr >> (nor->addr_width * 8 - 24);
cmd[4] = addr >> (nor->addr_width * 8 - 32);
}
static int w25q_cmdsz(struct spi_nor *nor)
{
return 1 + nor->addr_width;
}
static int w25q32jv_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
struct w25q *flash = nor->priv;
struct spi_device *spi = flash->spi;
flash->command[0] = opcode;
if (buf)
memcpy(&flash->command[1], buf, len);
return spi_write(spi, flash->command, len + 1);
}
static ssize_t w25q32jv_write(struct spi_nor *nor, loff_t to, size_t len,
const u_char *buf)
{
struct w25q *flash = nor->priv;
struct spi_device *spi = flash->spi;
unsigned int inst_nbits, addr_nbits, data_nbits, data_idx;
struct spi_transfer t[3] = {};
struct spi_message m;
int cmd_sz = w25q_cmdsz(nor);
ssize_t ret;
/* get transfer protocols. */
inst_nbits = spi_nor_get_protocol_inst_nbits(nor->write_proto);
addr_nbits = spi_nor_get_protocol_addr_nbits(nor->write_proto);
data_nbits = spi_nor_get_protocol_data_nbits(nor->write_proto);
spi_message_init(&m);
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
cmd_sz = 1;
flash->command[0] = nor->program_opcode;
w25q_addr2cmd(nor, to, flash->command);
t[0].tx_buf = flash->command;
t[0].tx_nbits = inst_nbits;
t[0].len = cmd_sz;
spi_message_add_tail(&t[0], &m);
/* split the op code and address bytes into two transfers if needed. */
data_idx = 1;
if (addr_nbits != inst_nbits) {
t[0].len = 1;
t[1].tx_buf = &flash->command[1];
t[1].tx_nbits = addr_nbits;
t[1].len = cmd_sz - 1;
spi_message_add_tail(&t[1], &m);
data_idx = 2;
}
t[data_idx].tx_buf = buf;
t[data_idx].tx_nbits = data_nbits;
t[data_idx].len = len;
spi_message_add_tail(&t[data_idx], &m);
ret = spi_sync(spi, &m);
if (ret)
return ret;
ret = m.actual_length - cmd_sz;
if (ret < 0)
return -EIO;
return ret;
}
/*
* Read an address range from the nor chip. The address range
* may be any size provided it is within the physical boundaries.
*/
static ssize_t w25q32jv_read(struct spi_nor *nor, loff_t from, size_t len,
u_char *buf)
{
struct w25q *flash = nor->priv;
struct spi_device *spi = flash->spi;
unsigned int inst_nbits, addr_nbits, data_nbits, data_idx;
struct spi_transfer t[3];
struct spi_message m;
unsigned int dummy = nor->read_dummy;
ssize_t ret;
int cmd_sz;
/* get transfer protocols. */
inst_nbits = spi_nor_get_protocol_inst_nbits(nor->read_proto);
addr_nbits = spi_nor_get_protocol_addr_nbits(nor->read_proto);
data_nbits = spi_nor_get_protocol_data_nbits(nor->read_proto);
/* convert the dummy cycles to the number of bytes */
dummy = (dummy * addr_nbits) / 8;
if (spi_flash_read_supported(spi)) {
struct spi_flash_read_message msg;
memset(&msg, 0, sizeof(msg));
msg.buf = buf;
msg.from = from;
msg.len = len;
msg.read_opcode = nor->read_opcode;
msg.addr_width = nor->addr_width;
msg.dummy_bytes = dummy;
msg.opcode_nbits = inst_nbits;
msg.addr_nbits = addr_nbits;
msg.data_nbits = data_nbits;
ret = spi_flash_read(spi, &msg);
if (ret < 0)
return ret;
return msg.retlen;
}
spi_message_init(&m);
memset(t, 0, (sizeof t));
flash->command[0] = nor->read_opcode;
w25q_addr2cmd(nor, from, flash->command);
t[0].tx_buf = flash->command;
t[0].tx_nbits = inst_nbits;
t[0].len = w25q_cmdsz(nor) + dummy;
spi_message_add_tail(&t[0], &m);
/*
* Set all dummy/mode cycle bits to avoid sending some manufacturer
* specific pattern, which might make the memory enter its Continuous
* Read mode by mistake.
* Based on the different mode cycle bit patterns listed and described
* in the JESD216B specification, the 0xff value works for all memories
* and all manufacturers.
*/
cmd_sz = t[0].len;
memset(flash->command + cmd_sz - dummy, 0xff, dummy);
/* split the op code and address bytes into two transfers if needed. */
data_idx = 1;
if (addr_nbits != inst_nbits) {
t[0].len = 1;
t[1].tx_buf = &flash->command[1];
t[1].tx_nbits = addr_nbits;
t[1].len = cmd_sz - 1;
spi_message_add_tail(&t[1], &m);
data_idx = 2;
}
t[data_idx].rx_buf = buf;
t[data_idx].rx_nbits = data_nbits;
t[data_idx].len = min3(len, spi_max_transfer_size(spi),
spi_max_message_size(spi) - cmd_sz);
spi_message_add_tail(&t[data_idx], &m);
ret = spi_sync(spi, &m);
if (ret)
return ret;
ret = m.actual_length - cmd_sz;
if (ret < 0)
return -EIO;
return ret;
}
#ifdef SPI_TRANSFER_TEST
static ssize_t
spidev_sync(struct w25q *spidev, struct spi_message *message)
{
DECLARE_COMPLETION_ONSTACK(done);
int status;
struct spi_device *spi;
spi = spidev->spi;
if (spi == NULL)
status = -ESHUTDOWN;
else
status = spi_sync(spi, message);
if (status == 0)
status = message->actual_length;
return status;
}
static int spidev_message(struct w25q *spidev,
struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
{
struct spi_message msg;
struct spi_transfer *k_xfers;
struct spi_transfer *k_tmp;
struct spi_ioc_transfer *u_tmp;
unsigned n, total, tx_total, rx_total;
u8 *tx_buf, *rx_buf;
int status = -EFAULT;
spi_message_init(&msg);
k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
if (k_xfers == NULL)
return -ENOMEM;
/* Construct spi_message, copying any tx data to bounce buffer.
* We walk the array of user-provided transfers, using each one
* to initialize a kernel version of the same transfer.
*/
tx_buf = spidev->tx_buffer;
rx_buf = spidev->rx_buffer;
total = 0;
tx_total = 0;
rx_total = 0;
for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
n > 0;
n--, k_tmp++, u_tmp++) {
k_tmp->len = u_tmp->len;
total += k_tmp->len;
/* Since the function returns the total length of transfers
* on success, restrict the total to positive int values to
* avoid the return value looking like an error. Also check
* each transfer length to avoid arithmetic overflow.
*/
if (total > INT_MAX || k_tmp->len > INT_MAX) {
status = -EMSGSIZE;
goto done;
}
if (u_tmp->rx_buf) {
/* this transfer needs space in RX bounce buffer */
rx_total += k_tmp->len;
if (rx_total > bufsiz) {
status = -EMSGSIZE;
goto done;
}
k_tmp->rx_buf = (void *)(u_xfers->rx_buf);
//rx_buf += k_tmp->len;
}
if (u_tmp->tx_buf) {
/* this transfer needs space in TX bounce buffer */
tx_total += k_tmp->len;
if (tx_total > bufsiz) {
status = -EMSGSIZE;
goto done;
}
k_tmp->tx_buf = tx_buf;
strncpy(tx_buf,(char *)u_tmp->tx_buf,u_tmp->len);
tx_buf += k_tmp->len;
}
k_tmp->cs_change = !!u_tmp->cs_change;
k_tmp->tx_nbits = u_tmp->tx_nbits;
k_tmp->rx_nbits = u_tmp->rx_nbits;
k_tmp->bits_per_word = u_tmp->bits_per_word;
k_tmp->delay_usecs = u_tmp->delay_usecs;
k_tmp->speed_hz = u_tmp->speed_hz;
if (!k_tmp->speed_hz)
k_tmp->speed_hz = spidev->speed_hz;
spi_message_add_tail(k_tmp, &msg);
}
status = spidev_sync(spidev, &msg);
if (status < 0)
{
printk("%s LINE = %d\n",__func__,__LINE__);
goto done;
}
status = total;
done:
kfree(k_xfers);
return status;
}
int transfer_demo(struct w25q *flash)
{
int ret = 0;
u8 recevie_buf[4] = {0x0};
u8 send_buf[4] = {0x0};
struct spi_ioc_transfer tr = {
.tx_buf = (unsigned long)send_buf, //定义发送缓冲区指针
.rx_buf = (unsigned long)recevie_buf, //定义接收缓冲区指针
.len = 4,
.delay_usecs = 0,
.speed_hz = 1000000,
.bits_per_word = 8,
};
W25Q = flash;
W25Q->dev = &flash->spi->dev;
W25Q->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
if (!W25Q->tx_buffer) {
dev_err(&W25Q->spi->dev, "alloc tx_buffer failed\n");
return -ENOMEM;
}
W25Q->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
if (!W25Q->rx_buffer) {
dev_err(&W25Q->spi->dev, "alloc rx_buffer failed\n");
return -ENOMEM;
}
send_buf[0] = 0x9f;
ret = spidev_message(W25Q,&tr,1);
printk("transfer_demo result : %02x:%02x:%02x\n",
recevie_buf[1],recevie_buf[2],recevie_buf[3]);
return ret;
}
#endif
/*
* board specific setup should have ensured the SPI clock used here
* matches what the READ command supports, at least until this driver
* understands FAST_READ (for clocks over 25 MHz).
*/
static int w25q_probe(struct spi_device *spi)
{
struct flash_platform_data *data;
struct w25q *flash;
struct spi_nor *nor;
struct spi_nor_hwcaps hwcaps = {
.mask = SNOR_HWCAPS_READ |
SNOR_HWCAPS_READ_FAST |
SNOR_HWCAPS_PP,
};
char *flash_name;
int ret;
data = dev_get_platdata(&spi->dev);
flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
if (!flash)
return -ENOMEM;
nor = &flash->spi_nor;
/* install the hooks */
nor->read = w25q32jv_read;
nor->write = w25q32jv_write;
nor->write_reg = w25q32jv_write_reg;
nor->read_reg = w25q32jv_read_reg;
nor->dev = &spi->dev;
spi_nor_set_flash_node(nor, spi->dev.of_node);
nor->priv = flash;
spi_set_drvdata(spi, flash);
flash->spi = spi;
if (spi->mode & SPI_RX_QUAD) {
hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
if (spi->mode & SPI_TX_QUAD)
hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
SNOR_HWCAPS_PP_1_1_4 |
SNOR_HWCAPS_PP_1_4_4);
} else if (spi->mode & SPI_RX_DUAL) {
hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
if (spi->mode & SPI_TX_DUAL)
hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
}
if (data && data->name)
nor->mtd.name = data->name;
/* For some (historical?) reason many platforms provide two different
* names in flash_platform_data: "name" and "type". Quite often name is
* set to "w25q32jv" and then "type" provides a real chip name.
* If that's the case, respect "type" and ignore a "name".
*/
if (data && data->type)
flash_name = data->type;
else if (!strcmp(spi->modalias, "spi-nor"))
flash_name = NULL; /* auto-detect */
else
flash_name = spi->modalias;
#ifdef SPI_TRANSFER_TEST
ret = transfer_demo(flash);
#endif
ret = spi_nor_scan(nor, flash_name, &hwcaps);
if (ret)
return ret;
return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
data ? data->nr_parts : 0);
}
static int w25q_remove(struct spi_device *spi)
{
struct w25q *flash = spi_get_drvdata(spi);
/* Clean up MTD stuff. */
return mtd_device_unregister(&flash->spi_nor.mtd);
}
/*
* Do NOT add to this array without reading the following:
*
* Historically, many flash devices are bound to this driver by their name. But
* since most of these flash are compatible to some extent, and their
* differences can often be differentiated by the JEDEC read-ID command, we
* encourage new users to add support to the spi-nor library, and simply bind
* against a generic string here (e.g., "jedec,spi-nor").
*
* Many flash names are kept here in this list (as well as in spi-nor.c) to
* keep them available as module aliases for existing platforms.
*/
static const struct spi_device_id w25q_ids[] = {
/*
* Allow non-DT platform devices to bind to the "spi-nor" modalias, and
* hack around the fact that the SPI core does not provide uevent
* matching for .of_match_table
*/
{"spi-nor"},
/*
* Entries not used in DTs that should be safe to drop after replacing
* them with "spi-nor" in platform data.
*/
{"s25sl064a"}, {"w25x16"}, {"w25q10"}, {"w25qx64"},
/*
* Entries that were used in DTs without "jedec,spi-nor" fallback and
* should be kept for backward compatibility.
*/
{"at25df321a"}, {"at25df641"}, {"at26df081a"},
{"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
{"mx25l25635e"},{"mx66l51235l"},
{"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
{"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
{"s25fl064k"},
{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
{"w25q40"}, {"w25q32jv"}, {"w25q16"}, {"w25q32"},
{"w25q64"}, {"w25q128"},
{"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
{"w25q80bl"}, {"w25q128"}, {"w25q256"},
/* Flashes that can't be detected using JEDEC */
{"w25q05-nonjedec"}, {"w25q10-nonjedec"}, {"w25q20-nonjedec"},
{"w25q40-nonjedec"}, {"w25q32jv-nonjedec"}, {"w25q16-nonjedec"},
{"w25q32-nonjedec"}, {"w25q64-nonjedec"}, {"w25q128-nonjedec"},
/* Everspin MRAMs (non-JEDEC) */
{ "mr25h256" }, /* 256 Kib, 40 MHz */
{ "mr25h10" }, /* 1 Mib, 40 MHz */
{ "mr25h40" }, /* 4 Mib, 40 MHz */
{ },
};
MODULE_DEVICE_TABLE(spi, w25q_ids);
static const struct of_device_id w25q_of_table[] = {
/*
* Generic compatibility for SPI NOR that can be identified by the
* JEDEC READ ID opcode (0x9F). Use this, if possible.
*/
{ .compatible = "w25q32jv,spi-nor" },
{}
};
MODULE_DEVICE_TABLE(of, w25q_of_table);
static struct spi_driver w25q32jv_driver = {
.driver = {
.name = "w25q32jv",
.of_match_table = w25q_of_table,
},
.id_table = w25q_ids,
.probe = w25q_probe,
.remove = w25q_remove,
/* REVISIT: many of these chips have deep power-down modes, which
* should clearly be entered on suspend() to minimize power use.
* And also when they're otherwise idle...
*/
};
static int __init w25q32jv_init(void)
{
int status;
status = spi_register_driver(&w25q32jv_driver);
if (status < 0) {
pr_err("w25q32jv_driver init failed\n");
return status;
}
pr_err("w25q32jv_driver init success\n");
return status;
}
module_init(w25q32jv_init);
static void __exit w25q32jv_exit(void)
{
pr_err("w25q32jv_driver exit\n");
spi_unregister_driver(&w25q32jv_driver);
}
module_exit(w25q32jv_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST w25qxx flash chips");
如果不在支持列表,那么切记要修改下面这支文件
drivers\mtd\spi-nor\spi-nor.c
static const struct flash_info spi_nor_ids[] = {
...
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
...
}
我这颗刚好内核中已经有了,省了这一步
3. 修改dtsi文件
spiflash: spiflash@1 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "w25q32jv,spi-nor";
reg = <0>; //注意片选不要和该总线上的其他设备冲突,当前 CS 低电平有效
status = "okay";
spi-max-frequency = <10000000>;
mode = <0>;
partition@0 {
reg = <0x0 0x1000000>;
label = "spi-flash";
};
};
4. 查看内核Log,确认是否已经识别到了
root@NanoPi-NEO:/home# insmod w25q32jv.ko
[ 2006.334004] w25q32jv spi0.0: JEDEC id bytes: ef, 40, 16
[ 2006.348647] w25q32jv_driver init success
root@NanoPi-NEO:/home# dmesg -c
[ 2006.333526] __spi_register_driver LINE = 398
[ 2006.333896] transfer_demo result : ef:40:16
[ 2006.334004] w25q32jv spi0.0: JEDEC id bytes: ef, 40, 16
[ 2006.339365] w25q32jv spi0.0: w25q32 (4096 Kbytes)
[ 2006.345831] 1 ofpart partitions found on MTD device spi0.0
[ 2006.345846] Creating 1 MTD partitions on "spi0.0":
[ 2006.345865] 0x000000000000-0x000001000000 : "spi-flash"
[ 2006.345871] mtd: partition "spi-flash" extends beyond the end of device "spi0
[ 2006.348647] w25q32jv_driver init success
Perfect,内核已经成功识别芯片,并为我创建了一个分区
我们还可以再看下mtd信息,进一步确认
root@NanoPi-NEO:/home# cat /proc/mtd
dev: size erasesize name
mtd0: 00400000 00001000 "spi-flash"
各字段解释如下:
size:分区大小(字节),当前spi flash为4M
erasesize:单次最小擦除字节数,(当前4K)
5. 格式化分区,挂载磁盘
flash_erase /dev/mtd0 0 0
然后挂载分区到mnt目录
mount -t jffs2 /dev/mtdblock0 /mnt
root@NanoPi-NEO:/home# mount -t jffs2 /dev/mtdblock0 /mnt
root@NanoPi-NEO:/home# cd /mnt/
root@NanoPi-NEO:/mnt# ls
root@NanoPi-NEO:/mnt#
创建一个文件,并向里面写入内容
root@NanoPi-NEO:/mnt# touch hello.txt
root@NanoPi-NEO:/mnt# echo hello > hello.txt
root@NanoPi-NEO:/mnt# cat hello.txt
hello
随后umount掉mnt分区
root@NanoPi-NEO:/mnt# cd ..
root@NanoPi-NEO:/# umount /mnt/
root@NanoPi-NEO:/#
之后重启终端,重新挂载分区到mnt目录,确认文件已经成功写入
root@NanoPi-NEO:/# mount -t jffs2 /dev/mtdblock0 /mnt
root@NanoPi-NEO:/# cd mnt/
root@NanoPi-NEO:/mnt# ls
hello.txt
root@NanoPi-NEO:/mnt# cat hello.txt
hello
root@NanoPi-NEO:/mnt#