- 免费像素画绘制软件 | Pixelorama v1.0.3
dntktop
软件运维windows
Pixelorama是一款开源像素艺术多工具软件,旨在为用户提供一个强大且易于使用的平台来创作各种像素艺术作品,包括精灵、瓷砖和动画。这款软件以其丰富的工具箱、动画支持、像素完美模式、剪裁遮罩、预制及可导入的调色板等特色功能,满足了像素艺术家们的各种需求。用户可以享受到动态工具映射、洋葱皮效果、帧标签、播放动画时绘制等高级功能,以及非破坏性的、完全可定制的图层效果,如轮廓、渐变映射、阴影和调色板化
- 昇思MindSpore AI框架MindFormers实践3:ChatGLM3-6B对一段文字进行提取
skywalk8163
人工智能项目实践人工智能mindspore
MindSpore和MindFormers安装参见:昇思AI框架实践1:安装MindSpoe和MindFormers_miniconda安装mindspore-CSDN博客使用了MindSpore2.2和MindFormers1.0支持的模型:KeyError:"modelmustbeinodict_keys(['gpt2','gpt2_lora','gpt2_xl','gpt2_xl_lora'
- 一文看懂物联网通信技术
SEEKSEE AIoT
物联网
无线通信传输是实现万物互联的重要环节,其在传输速度及成本方面具有显著优势。今天我们将一起聊聊物联网无线通信的几种常见类型,了解其优势及应用。你好!物联网的无线通信技术种类繁多,从通信距离上可分为短距离(近距离)无线通信技术和低功耗广域网(远距离)通信技术。近距离通信技术包括Wi-Fi、蓝牙、ZigBee等,远距离通信技术以2G/3G/4G/5G、LPWAN(NB-IoT、eMTC、LoRa等)为代
- 三相电表智能抄表是什么?
BZWL_BZWL
自动化运维人工智能数据分析大数据
一、三相电表智能抄表简述三相电表智能抄表操作系统是电力领域科学化管理不可或缺的一部分,它利用先进的物联网,完成了对三相电表数据库的自动采集、传送、解决与分析,大大提升了电力经营效率和服务水平。二、原理与优势1.原理:智能电表内嵌感应器,可精准测量三相电电压、电流和功率等数据。这些信息根据无线通讯模块(如GPRS、NB-IoT等)传送到云服务器,完成智能抄表。与此同时,电度表还能实时检测电网情况,防
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-unsloth(让微调起飞)-单机单卡-V100(十七)
开源技术探险家
开源模型-实际应用落地#深度学习语言模型自然语言处理
一、前言本篇文章将在v100单卡服务器上,使用unsloth去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。使用unsloth能够使模型的微调速度提高2-5倍。在处理大规模数据或对时间要求较高的场景下,这可以大大节省微调所需的时间,提高开发效率。其次,可减少80%的内存使用。这对于资源有限的环境或者需要同时运行多个微调任务的
- 大模型微调 - 基于预训练大语言模型的对话生成任务 训练代码
西笑生
大模型大模型自然语言处理微调
大模型微调-基于预训练大语言模型的对话生成任务训练代码flyfish模型扮演堂吉诃德这个角色,回答关于自我介绍的问题importtorchfromdatasetsimportDatasetfrommodelscopeimportAutoTokenizer,AutoModelForCausalLMfrompeftimportLoraConfig,TaskType,get_peft_modelfrom
- QLoRa使用教程
云帆@
训练peft人工智能
一、定义定义案例1二、实现定义QLoRa:量化+LoRa.网址:https://huggingface.co/docs/peft/main/en/developer_guides/quantization案例11.4bit量化+LoRaimporttorchfromtransformersimportBitsAndBytesConfigconfig=BitsAndBytesConfig(load_
- 大模型基础知识-LoRA与QLoRA
破壁者-燕
深度学习
介绍LoRA与QLoRA1.LoRA(Low-RankAdaptation)LoRA是一种用于大规模语言模型(LLM)的参数高效微调技术,旨在减少微调大模型所需的计算资源和存储空间。LoRA的核心思想是将全量参数更新分解为低秩矩阵的形式,从而显著减少参数数量和计算开销。核心思想:低秩分解:将大模型的权重矩阵表示为两个低秩矩阵的乘积。这种分解方法不仅保留了原始模型的表示能力,还显著减少了微调过程中需
- 通感算一体化:(一)初步阐明定义和挑战
炸膛坦客
无线感知信息与通信自动驾驶智慧城市
常用的无线感知波无线电波频率高于300MHz的电磁波为微波波段,频率不同、波长不同、传输距离也各不相同。这类微波波长短,绕射能力差,往往用作视距(LoS)或者超视距中继通信。下面将分别介绍微波波段的几种代表性技术:WiFi、mmWave、UWB、Bluetooth、RFID、(NFC、ZigBee、LoRa、NB-IoT)这几种常见技术。前五种见于无线感知领域,后四种包括现在的5G、LTE等多用于
- 深度学习速通系列:LoRA微调是什么
Ven%
深度学习速通系列人工智能深度学习python机器学习nlp
LoRA微调(Low-RankAdaptation)是一种用于大型预训练语言模型(LLM)的高效微调技术。它的核心思想是在不改变预训练模型权重的前提下,通过在模型的Transformer层中引入可训练的低秩矩阵来实现模型的微调。这种方法可以显著减少训练参数的数量,从而降低对计算资源的需求。LoRA微调的原理:LoRA微调方法建议冻结预训练模型的权重,并在每个Transformer块中注入可训练的低
- 大模型LLM面试常见算法题-包括Attention和Transformer常见面试题
剑圣土豆
算法面试大模型学习自然语言处理transformer算法nlp自然语言处理面试深度学习人工智能
大模型:位置编码有哪些?介绍LoRA与QLoRARAG和微调的区别是什么?哪些因素会导致LLM的偏见?什么是思维链(CoT)提示?Tokenizer的实现方法及原理解释一下大模型的涌现能力?解释langchainAgent的概念langchain有哪些替代方案?RLHF完整训练过程是什么?为什么RLHF的效果这么好?RLHF使用的训练数据是什么样的?RAG和微调的区别是什么?有了解过什么是稀疏微调
- [Lora][微调] Qwen-VL/Qwen-VL-chat微调问题
翔迅AI
python
@[Lora][微调]Qwen-VL/Qwen-VL-chat微调问题关于Qwen-VL在lora过程中出现的问题总结。模型预训练错误一“erfinv_cuda”notimplementedfor‘BFloat16’RuntimeError:"erfinv_cuda"notimplementedfor'BFloat16'参考github中issue253给出的意见,修改Qwen-VL-Chat/v
- 2023-07-12
大法师的输出
模型:xxmix9realistic_v30LoRA:,,,室内、起居室、咖啡杯等构建环境氛围效果图1(SFW:2),HDR,UHD,8K,bestquality,masterpiece,Highlydetailed,Studiolighting,ultra-finepainting,sharpfocus,physically-basedrendering,extremedetaildescrip
- 【神经网络系列(高级)】神经网络Grokking现象的电路效率公式——揭秘学习飞跃的秘密【通俗理解】
神经美学_茂森
神经网络人工智能算法神经网络学习人工智能
【通俗理解】神经网络Grokking现象的电路效率公式论文地址:https://arxiv.org/abs/2309.02390参考链接:[1]https://x.com/VikrantVarma_/status/1699823229307699305[2]https://pair.withgoogle.com/explorables/grokking/关键词提炼#Grokking现象#神经网络#
- 记录-小程序720°VR(跳转H5页面实现)
久违的小技巧
小程序小程序vrjavascript
全景浏览提前准备1拍照支架/照片合成软件(KolorAutopanoGiga4.0)或者全景相机2pannellum(pannellum是一个轻量级、免费和开源的Web全景查看器。它使用HTML5、CSS3、JavaScript和WebGL构建,没有插件。)3H5页面引入pannellum.js/css文件,swiper/jquery文件(因为需要在全景图底部显示可切换图片,与dom操作/ajax
- 大模型推理框架 RTP-LLM 架构解析
阿里技术
架构LLM推理阿里巴巴RPT
RTP-LLM是阿里巴巴智能引擎团队推出的大模型推理框架,支持了包括淘宝、天猫、闲鱼、菜鸟、高德、饿了么、AE、Lazada等多个业务的大模型推理场景。RTP-LLM与当前广泛使用的多种主流模型兼容,使用高性能的CUDAkernel,包括PagedAttention、FlashAttention、FlashDecoding等,支持多模态、LoRA、P-Tuning、以及WeightOnly动态量化
- flux 文生图大模型 自有数据集 lora微调训练案例
loong_XL
深度学习fluxaigcsd文生图多模态
参考:https://github.com/ostris/ai-toolkit目前Flux出现了3个训练工具SimpleTunerhttps://github.com/bghira/SimpleTunerX-LABS的https://github.com/XLabs-AI/x-fluxai-toolkithttps://github.com/ostris/ai-toolkit待支持:https:/
- 【WPF动画】
TIF星空
WPF分享wpf经验分享c#
关于WPF中System.Windows.Media.Animation命名空间下常用动画类的简要介绍、使用方法和适用场景的表格使用场景解释:示例代码1示例代码2:使用`Storyboard`组合多个动画代码解释应用场景动画类描述使用示例适用场景DoubleAnimation用于为double类型的属性(如Width,Height等)创建动画。xml控件大小的变化、透明度的渐变等。ColorAni
- Flutter Theme Tailor Annotation使用指南:自定义主题注解
明似水
flutterflutterandroid
FlutterThemeTailorAnnotation使用指南:自定义主题注解简介theme_tailor_annotation是一个Dart注解包,它与ThemeTailor代码生成器配合使用,用于帮助开发者自定义Flutter应用的主题。ThemeTailor允许开发者通过注解来定义主题相关的属性,然后自动生成相应的主题代码。主要功能注解定义:使用注解来定义主题的属性和值。代码生成:自动生成
- Flora女王的感恩日记
Flora女王
2019.07.31Flora女王的感恩日记感恩我的宇宙哥哥每天都把我照顾的那么好,谢谢,谢谢,谢谢!感恩今天去医院做身体检查医院里的人不是很多我可以顺利完成,谢谢,谢谢,谢谢!感恩今天去医院拿很久以前的一份报告工作人员为我去翻查记录,谢谢,谢谢,谢谢!感恩我的钱宝宝服务于我,现在我可以细细的感受自己要买的每一件物品是否是自己真是所需,谢谢,谢谢,谢谢!感恩今天与公子欢分享我的奇迹时感受到了她的那
- 开源模型应用落地-qwen2-7b-instruct-LoRA微调-ms-swift-单机单卡-V100(十二)
开源技术探险家
开源模型-实际应用落地#深度学习语言模型自然语言处理
一、前言本篇文章将在v100单卡服务器上,使用ms-swift去高效微调QWen2系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。二、术语介绍2.1.LoRA微调LoRA(Low-RankAdaptation)用于微调大型语言模型(LLM)。是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量
- 2023-07-02
大法师的输出
大模型:breakdomainrealistic_R2333LoRA:,效果图(SFW:2),HDR,UHD,8K,bestquality,masterpiece,Highlydetailed,Studiolighting,ultra-finepainting,sharpfocus,physically-basedrendering,extremedetaildescription,Profess
- 学习 Rust:I/O Ring
老父亲的能量嘎嘣脆
rust学习后端开发语言职场和发展
Areyoudisappointedwithselect,poll,epollorAIO?TryoutthebestI/OpromiseintheLinuxlandscape.您对select、poll、epoll或AIO感到失望吗?尝试Linux环境中最佳的I/O承诺。LinuxhasarichhistoryinmanagingI/Ooperations.Somemechanisms,likes
- 2022-2023学年英语周报九年级第10期答案及试题(初三第十期)
gaokaos
阅读理解:CastleRock,Colorado,isintheFrontRange进入查看:2022-2023学年英语周报九年级第10期答案及试题(初三第十期)CastleRock,Colorado,isintheFrontRangebetweenDenverandColoradoSprings.Thetownwasfirstsettledinthe1870sandnamedfortherock
- 数据科学生命周期的7个步骤–在业务中应用AI
听忆.
人工智能
数据科学生命周期的7个步骤–在业务中应用AI1.问题定义(BusinessUnderstanding)2.数据收集(DataCollection)3.数据准备(DataPreparation)4.数据探索(ExploratoryDataAnalysis,EDA)5.模型构建(Modeling)6.模型评估(Evaluation)7.模型部署与维护(DeploymentandMaintenance)
- NB-IoT,LoRA,WIFI,蓝牙,Zigbee,MQTT,CoAP之间的关系
hanchufeng2020
物联网
概览(从上往下)应用层协议:MQTT、CoAP...网络层、传输协议:IPv4、IPv6、TCP、6LoWPAN、RPL物理层、数据链路层协议:近距离通信:Dash、NFC、Bluetooth、RFID、IRdA...远距离蜂窝通信:GSM(2G)、WCDMA(3G)、LTE(3.9G)、TD-LTE(4G)、NB-IOT...远距离非蜂窝通信:ZigBee、WiFi、Z-Wave、wHART、L
- 大模型18:微调大模型方法PEFT(LoRA等) — 训练 “ChatGLM2“ 项目
bluewelkin
大模型
微调大模型的方法之一是PEFT(Parameter-EfficientFine-Tuning),其中包括LoRA(Low-RankAdaptation)等技术。PEFT方法能够在不显著增加计算资源消耗的情况下,微调大模型,从而适应特定任务。这种方法特别适用于像“ChatGLM2”这样的预训练大模型。什么是PEFT(Parameter-EfficientFine-Tuning)?PEFT是一种优化微
- 大模型微调方法总结:LoRA、Adapter、Prefix-tuning、P-tuning、Prompt-tuning
百度_开发者中心
prompt人工智能大模型
随着深度学习技术的不断发展,大型预训练模型已成为许多任务的重要工具。然而,微调(finetuning)这些大模型以适应特定任务是一个复杂且计算密集型的过程。本文将重点介绍五种不同的微调方法:LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning,并对它们进行总结。LoRA(LearnedRepresentationsforFinetuning)LoRA是
- 大模型微调技术(Adapter-Tuning、Prefix-Tuning、Prompt-Tuning(P-Tuning)、P-Tuning v2、LoRA)_adapter微调 p tuning
Cc不爱吃洋葱
prompt
2022年11月30日,ChatGPT发布至今,国内外不断涌现出了不少大模型,呈现“百模大战”的景象,比如ChatGLM-6B、LLAMA、Alpaca等模型及在此模型基础上进一步开发的特定领域的大模型。今年3月15日,GPT-4发布后,也出现了一些多模态的大模型,比如百度的文心一言、讯飞星火认知大模型等等。要想训练一个针对特定领域的大模型,如果采用全量参数微调(FullParameterFutu
- 欺诈文本分类微调(六):Lora单卡训练
沉下心来学鲁班
微调分类人工智能机器学习语言模型微调
1.引言前面欺诈文本分类微调(四):构造训练/测试数据集已经构造出了数据集,更之前的欺诈文本分类微调(一):基座模型选型选好了基座模型,这篇文章将基于构造出的数据集和选定的模型进行欺诈文本分类的微调训练。关于微调方法,我们将使用比较普遍的Lora:在模型中注入低秩矩阵的方式。关于训练器,使用transformers库中提供的Trainer类。2.数据准备2.1加载数据导入要使用的基础包。impor
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&