cs231n课程作业assignment1(KNN)

前言:


以斯坦福cs231n课程的python编程任务为主线,展开对该课程主要内容的理解和部分数学推导。
该课程相关笔记参考自知乎-CS231n官方笔记授权翻译总集篇发布

k-Nearest Neighbor分类器简介:


k-Nearest Neighbor,简称KNN,翻译过来的意思就是k邻近分类,一个测试与已知的训练集中的数据进行求欧氏距离运算,取前K个距离最短的数据,然后根据前K个数据中标签出现次数最多的便为该测试的标签,更高的k值可以让分类的效果更平滑,使得分类器对于异常值更有抵抗力。

KNN原理


图像分类数据集:CIFAR-10。这个数据集包含了60000张32X32的小图像。每张图像都有10种分类标签中的一种。这60000张图像被分为包含50000张图像的训练集和包含10000张图像的测试集。在下图中你可以看见10个类的10张随机图片。
cs231n课程作业assignment1(KNN)_第1张图片
最简单的求两个数据差异化的方法就是把每个像素相减求平方和,即计算欧氏距离。若不考虑平方的放大效果,可直接做差求和,换句话说,就是将两张图片先转化为两个向量,然后计算他们的距离d:
过程如下:
cs231n课程作业assignment1(KNN)_第2张图片
根据测试图像和已知数据进行比较后可以的得出当前test image和training image的距离关系,在高维度下不好表示,我们将其想象成二维的im(x,y)。然后我们找出距离最近的K个training image的标签,标签出现次数最多的就是当前test image的标签了。

cs231n课程作业assignment1(KNN)_第3张图片

Python实现过程


  • k_nearest_neighbor.py
  • #coding: utf-8
    import numpy as np
    
    class KNearestNeighbor(object):
      def __init__(self):
        pass
    
      def train(self, X, y):
        """
        Train the classifier. For k-nearest neighbors this is just 
        memorizing the training data.
    
        Inputs:
        - X: A numpy array of shape (num_train, D) containing the training data
          consisting of num_train samples each of dimension D.
        - y: A numpy array of shape (N,) containing the training labels, where
             y[i] is the label for X[i].
        """
        self.X_train = X
        self.y_train = y
    
      def predict(self, X, k=1, num_loops=0):
        """
        Predict labels for test data using this classifier.
    
        Inputs:
        - X: A numpy array of shape (num_test, D) containing test data consisting
             of num_test samples each of dimension D.
        - k: The number of nearest neighbors that vote for the predicted labels.
        - num_loops: Determines which implementation to use to compute distances
          between training points and testing points.
    
        Returns:
        - y: A numpy array of shape (num_test,) containing predicted labels for the
          test data, where y[i] is the predicted label for the test point X[i].  
        """
        if num_loops == 0:
          dists = self.compute_distances_no_loops(X)
        elif num_loops == 1:
          dists = self.compute_distances_one_loop(X)
        elif num_loops == 2:
          dists = self.compute_distances_two_loops(X)
        else:
          raise ValueError('Invalid value %d for num_loops' % num_loops)
    
        return self.predict_labels(dists, k=k)
    
      def compute_distances_two_loops(self, X):
        """
        Compute the distance between each test point in X and each training point
        in self.X_train using a nested loop over both the training data and the 
        test data.
    
        Inputs:
        - X: A numpy array of shape (num_test, D) containing test data.
    
        Returns:
        - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
          is the Euclidean distance between the ith test point and the jth training
          point.
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        for i in xrange(num_test):
          for j in xrange(num_train):
            train = self.X_train[j,:]
            test =  X[i,:]
            distence = np.sqrt(np.sum((test-train)**2))#Calculate the eyclidean distance
            dists[i,j]=distence
        return dists
    
      def compute_distances_one_loop(self, X):
        """
        Compute the distance between each test point in X and each training point
        in self.X_train using a single loop over the test data.
    
        Input / Output: Same as compute_distances_two_loops
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        for i in xrange(num_test):
          dis_array = X[i,:]-self.X_train
          dists[i,:] = np.sqrt(np.sum(dis_array**2))
        return dists
    
      def compute_distances_no_loops(self, X):
        """
        Compute the distance between each test point in X and each training point
        in self.X_train using no explicit loops.
    
        Input / Output: Same as compute_distances_two_loops
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train)) 
        M = np.dot(X, self.X_train.T)
        te = np.square(X).sum(axis = 1)
        tr = np.square(self.X_train).sum(axis = 1)
        dists = np.sqrt(-2*M+tr+np.matrix(te).T)
        dists = np.array(dists)
        return dists
    
      def predict_labels(self, dists, k=1):
        """
        Given a matrix of distances between test points and training points,
        predict a label for each test point.
    
        Inputs:
        - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
          gives the distance betwen the ith test point and the jth training point.
    
        Returns:
        - y: A numpy array of shape (num_test,) containing predicted labels for the
          test data, where y[i] is the predicted label for the test point X[i].  
        """
        num_test = dists.shape[0]
        y_pred = np.zeros(num_test)
        for i in xrange(num_test):
          # A list of length k storing the labels of the k nearest neighbors to
          # the ith test point.
          closest_y = []
          idx = np.argsort(dists[i,:],-1)
          closest_y = self.y_train[idx[:k]]
          closest_set = set(closest_y)#find max label
          for idx,item in enumerate(closest_set):
            y_pred[i]= item
            if idx == 0:
              break
        return y_pred

    详细测试部分:


  • TryKNN.py
  • # coding:utf-8
    
    import random
    import numpy as np
    from data_utils import load_CIFAR10
    import matplotlib.pyplot as plt
    plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'
    
    cifar10_dir = 'datasets/cifar-10-batches-py'#data_path
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
    print 'Training data shape: ', X_train.shape
    print 'Training labels shape: ', y_train.shape
    print 'Test data shape: ', X_test.shape
    print 'Test labels shape: ', y_test.shape
    
    num_training = 5000 #the trainning number
    mask = range(num_training) #create range number 
    X_train = X_train[mask]
    y_train = y_train[mask]
    
    num_test = 500 #the test number
    mask = range(num_test)
    X_test = X_test[mask]
    y_test = y_test[mask]
    
    # Reshape the image data into rows
    X_train = np.reshape(X_train, (X_train.shape[0], -1))#-1 mean auto number 
    X_test = np.reshape(X_test, (X_test.shape[0], -1))
    print X_train.shape, X_test.shape
    
    from classifiers import KNearestNeighbor#import
    
    classifier = KNearestNeighbor()
    #classifier.train(X_train, y_train)#data and lable
    #dists = classifier.compute_distances_no_loops(X_test)
    #print dists.shape
    
    #classifier the test and mark the label
    #y_test_pred = classifier.predict_labels(dists, k=7)
    #num_correct = np.sum(y_test_pred == y_test)
    #accuracy = float(num_correct) / num_test
    #print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)
    
    #compare the different function 
    def time_function(f, *args):
      """
      Call a function f with args and return the time (in seconds) that it took to execute.
      """
      import time
      tic = time.time()
      f(*args)
      toc = time.time()
      return toc - tic
    
    #two_loop_time = time_function(classifier.compute_distances_two_loops, X_test)
    #print 'Two loop version took %f seconds' % two_loop_time
    
    #one_loop_time = time_function(classifier.compute_distances_one_loop, X_test)
    #print 'One loop version took %f seconds' % one_loop_time
    #the faster than anyother
    #no_loop_time = time_function(classifier.compute_distances_no_loops, X_test)
    #print 'No loop version took %f seconds' % no_loop_time
    
    
    num_folds = 5
    k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]
    
    X_train_folds = []
    y_train_folds = []
    
    X_train_folds = np.array_split(X_train, num_folds);#split the array
    y_train_folds = np.array_split(y_train, num_folds);
    
    k_to_accuracies = {}
    for k in k_choices:
        k_to_accuracies[k] = []
    
    for k in k_choices:#find the best k-value
        for i in range(num_folds):
            X_train_cv = np.vstack(X_train_folds[:i]+X_train_folds[i+1:])
            X_test_cv = X_train_folds[i]
    
            y_train_cv = np.hstack(y_train_folds[:i]+y_train_folds[i+1:])  #size:4000
            y_test_cv = y_train_folds[i]
    
            classifier.train(X_train_cv, y_train_cv)
            dists_cv = classifier.compute_distances_no_loops(X_test_cv)
    
            y_test_pred = classifier.predict_labels(dists_cv, k)
            num_correct = np.sum(y_test_pred == y_test_cv)
            accuracy = float(num_correct) / y_test_cv.shape[0]
    
            k_to_accuracies[k].append(accuracy)
    for k in sorted(k_to_accuracies):
        for accuracy in k_to_accuracies[k]:
            print 'k = %d, accuracy = %f' % (k, accuracy)
    
            # plot the raw observations
    for k in k_choices:
      accuracies = k_to_accuracies[k]
      plt.scatter([k] * len(accuracies), accuracies)
    
    # plot the trend line with error bars that correspond to standard deviation
    accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.items())])
    accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.items())])
    plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std)
    plt.title('Cross-validation on k')
    plt.xlabel('k')
    plt.ylabel('Cross-validation accuracy')
    plt.show()
    
    # Based on the cross-validation results above, choose the best value for k,   
    # retrain the classifier using all the training data, and test it on the test
    # data. You should be able to get above 28% accuracy on the test data.
    best_k = 1
    
    classifier = KNearestNeighbor()
    classifier.train(X_train, y_train)
    y_test_pred = classifier.predict(X_test, k=best_k)
    
    # Compute and display the accuracy
    num_correct = np.sum(y_test_pred == y_test)
    accuracy = float(num_correct) / num_test
    print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)

    cs231n课程作业assignment1(KNN)_第4张图片

    KNN分类器的优劣:


    首先,Nearest Neighbor分类器易于理解,实现简单。其次,算法的训练不需要花时间,因为其训练过程只是将训练集数据存储起来。
    然而测试要花费大量时间计算,因为每个测试图像需要和所有存储的训练图像进行比较,这显然是一个缺点。
    总体来说KNN分类器的训练花费非常小,而实际的识别开销非常大,在不进行特征提取的情况下很难运用到时间当中去。

    你可能感兴趣的:(cn231n)