挑战全网目前最全python例子(附源码),独此一家,经典值得收藏!!!(一):感受Python之美,Python基础

全网目前最全python例子(附源码)

源码

github.com/javanan/pyt…

告别枯燥,60秒学会一个小例子,系统学习Python,从入门到大师。Python之路已有190个例子:

第零章:感受Python之美

第一章:Python基础

第二章:Python之坑

第三章:Python字符串和正则

第四章:Python文件

第五章:Python日期

第六章:Python利器

第七章:Python画图

第八章:Python实战

第九章:Python基础算法

第十章:Python机器学习

后续章节:

  1. 不断丰富原有1~7章节;
  2. Python基础算法;
  3. python 机器学习,包括机器学习的基础概念和十大核心算法以及Sklearn和Kaggle实战的小例子。
  4. PyQt制作GUI
  5. Flask前端开发
  6. Python数据分析:NumPy, Pandas, Matplotlib, Plotly等
  7. 免费领取Python自动化学习资料  工具,面试宝典面试技巧,加QQ群,785128166,群内还会大佬技术交流

感受Python之美

1 简洁之美

通过一行代码,体会Python语言简洁之美

  1. 一行代码交换a,b
a, b = b, a
复制代码
  1. 一行代码反转列表
[1,2,3][::-1] # [3,2,1]
复制代码
  1. 一行代码合并两个字典
{**{'a':1,'b':2}, **{'c':3}} # {'a': 1, 'b': 2, 'c': 3}

复制代码
  1. 一行代码列表去重
set([1,2,2,3,3,3]) # {1, 2, 3}
复制代码
  1. 一行代码求多个列表中的最大值
max(max([ [1,2,3], [5,1], [4] ], key=lambda v: max(v))) # 5
复制代码
  1. 一行代码生成逆序序列
list(range(10,-1,-1)) # [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
复制代码

2 Python绘图

Python绘图方便、漂亮,画图神器pyecharts几行代码就能绘制出热力图:

挑战全网目前最全python例子(附源码),独此一家,经典值得收藏!!!(一):感受Python之美,Python基础_第1张图片

 

 

炫酷的水球图:

挑战全网目前最全python例子(附源码),独此一家,经典值得收藏!!!(一):感受Python之美,Python基础_第2张图片

 

 

经常使用的词云图:

 

挑战全网目前最全python例子(附源码),独此一家,经典值得收藏!!!(一):感受Python之美,Python基础_第3张图片

 

 

3 Python动画

仅适用Python的常用绘图库:Matplotlib,就能制作出动画,辅助算法新手入门基本的排序算法。如下为一个随机序列,使用快速排序算法,由小到大排序的过程动画展示:

挑战全网目前最全python例子(附源码),独此一家,经典值得收藏!!!(一):感受Python之美,Python基础_第4张图片

 

 

归并排序动画展示:

 

挑战全网目前最全python例子(附源码),独此一家,经典值得收藏!!!(一):感受Python之美,Python基础_第5张图片

 

 

使用turtule绘制的漫天雪花:

 

挑战全网目前最全python例子(附源码),独此一家,经典值得收藏!!!(一):感受Python之美,Python基础_第6张图片

 

 

4 Python数据分析

Python非常适合做数值计算、数据分析,一行代码完成数据透视:

pd.pivot_table(df, index=['Manager', 'Rep'], values=['Price'], aggfunc=np.sum)
复制代码

5 Python机器学习

Python机器学习库Sklearn功能强大,接口易用,包括数据预处理模块、回归、分类、聚类、降维等。一行代码创建一个KMeans聚类模型:

from sklearn.cluster import KMeans
KMeans( n_clusters=3 )
复制代码

 

image.png

 

 

6 Python-GUI

PyQt设计器开发GUI,能够迅速通过拖动组建搭建出来,使用方便。如下为使用PyQt,定制的一个专属自己的小而美的计算器。

除此之外,使用Python的Flask框架搭建Web框架,也非常方便。

总之,在这个Python小例子,你都能学到关于使用Python干活的方方面面的有趣的小例子,欢迎关注。

一、Python基础(免费领取Python自动化学习资料  工具,面试宝典面试技巧,加QQ群,785128166,群内还会大佬技术交流)

Python基础主要总结Python常用内置函数;Python独有的语法特性、关键词nonlocalglobal等;内置数据结构包括:列表(list), 字典(dict), 集合(set), 元组(tuple) 以及相关的高级模块collections中的Counternamedtupledefaultdictheapq模块。目前共有82个小例子

此章节一共包括82个基础小例子。

1 求绝对值

绝对值或复数的模

In [1]: abs(-6)
Out[1]: 6
复制代码

2 元素都为真

接受一个迭代器,如果迭代器的所有元素都为真,那么返回True,否则返回False

In [2]: all([1,0,3,6])
Out[2]: False

In [3]: all([1,2,3])
Out[3]: True
复制代码

3 元素至少一个为真 

接受一个迭代器,如果迭代器里至少有一个元素为真,那么返回True,否则返回False

In [4]: any([0,0,0,[]])
Out[4]: False

In [5]: any([0,0,1])
Out[5]: True
复制代码

4 ascii展示对象  

调用对象的__repr__() 方法,获得该方法的返回值,如下例子返回值为字符串

In [1]: class Student():
   ...:     def __init__(self,id,name):
   ...:         self.id = id
   ...:         self.name = name
   ...:     def __repr__(self):
   ...:         return 'id = '+self.id +', name = '+self.name
   ...: 
   ...: 

In [2]: xiaoming = Student(id='001',name='xiaoming')

In [3]: print(xiaoming)
id = 001, name = xiaoming

In [4]: ascii(xiaoming)
Out[4]: 'id = 001, name = xiaoming'
复制代码

5 十转二

十进制转换为二进制

In [1]: bin(10)
Out[1]: '0b1010'
复制代码

6 十转八

十进制转换为八进制

In [1]: oct(9)
Out[1]: '0o11'
复制代码

7 十转十六

十进制转换为十六进制

In [1]: hex(15)
Out[1]: '0xf'
复制代码

8 判断是真是假  

测试一个对象是True, 还是False.

In [1]: bool([0,0,0])
Out[1]: True

In [2]: bool([])
Out[2]: False

In [3]: bool([1,0,1])
Out[3]: True
复制代码

9 字符串转字节  

将一个字符串转换成字节类型

In [1]: s = "apple"

In [2]: bytes(s,encoding='utf-8')
Out[2]: b'apple'
复制代码

10 转为字符串  

字符类型数值类型等转换为字符串类型

In [1]: i = 100

In [2]: str(i)
Out[2]: '100'
复制代码

11 是否可调用  

判断对象是否可被调用,能被调用的对象就是一个callable 对象,比如函数 strint 等都是可被调用的,但是例子4 中xiaoming实例是不可被调用的:

In [1]: callable(str)
Out[1]: True

In [2]: callable(int)
Out[2]: True

In [3]: xiaoming
Out[3]: id = 001, name = xiaoming

In [4]: callable(xiaoming)
Out[4]: False
复制代码

如果想让xiaoming能被调用 xiaoming(), 需要重写Student类的__call__方法:

In [1]: class Student():
    ...:     def __init__(self,id,name):
    ...:         self.id = id
    ...:         self.name = name
    ...:     def __repr__(self):
    ...:         return 'id = '+self.id +', name = '+self.name
    ...:     def __call__(self):
    ...:         print('I can be called')
    ...:         print(f'my name is {self.name}')
    ...: 
    ...: 

In [2]: t = Student('001','xiaoming')

In [3]: t()
I can be called
my name is xiaoming

复制代码

12 十转ASCII

查看十进制整数对应的ASCII字符

In [1]: chr(65)
Out[1]: 'A'
复制代码

13 ASCII转十

查看某个ASCII字符对应的十进制数

In [1]: ord('A')
Out[1]: 65
复制代码

14 静态方法 

classmethod 装饰器对应的函数不需要实例化,不需要 self参数,但第一个参数需要是表示自身类的 cls 参数,可以来调用类的属性,类的方法,实例化对象等。

In [1]: class Student():
    ...:     def __init__(self,id,name):
    ...:         self.id = id
    ...:         self.name = name
    ...:     def __repr__(self):
    ...:         return 'id = '+self.id +', name = '+self.name
    ...:     @classmethod
    ...:     def f(cls):
    ...:         print(cls)
复制代码

15 执行字符串表示的代码

将字符串编译成python能识别或可执行的代码,也可以将文字读成字符串再编译。

In [1]: s  = "print('helloworld')"
    
In [2]: r = compile(s,"", "exec")
    
In [3]: r
Out[3]:  at 0x0000000005DE75D0, file "", line 1>
    
In [4]: exec(r)
helloworld
复制代码

16 创建复数

创建一个复数

In [1]: complex(1,2)
Out[1]: (1+2j)
复制代码

17 动态删除属性  

删除对象的属性

In [1]: delattr(xiaoming,'id')

In [2]: hasattr(xiaoming,'id')
Out[2]: False
复制代码

18 转为字典  

创建数据字典

In [1]: dict()
Out[1]: {}

In [2]: dict(a='a',b='b')
Out[2]: {'a': 'a', 'b': 'b'}

In [3]: dict(zip(['a','b'],[1,2]))
Out[3]: {'a': 1, 'b': 2}

In [4]: dict([('a',1),('b',2)])
Out[4]: {'a': 1, 'b': 2}
复制代码

19 一键查看对象所有方法 

不带参数时返回当前范围内的变量、方法和定义的类型列表;带参数时返回参数的属性,方法列表。

In [96]: dir(xiaoming)
Out[96]:
['__class__',
 '__delattr__',
 '__dict__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__gt__',
 '__hash__',
 '__init__',
 '__init_subclass__',
 '__le__',
 '__lt__',
 '__module__',
 '__ne__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 '__weakref__',
 
 'name']
复制代码

20 取商和余数  

分别取商和余数

In [1]: divmod(10,3)
Out[1]: (3, 1)

21 枚举对象  

返回一个可以枚举的对象,该对象的next()方法将返回一个元组。

In [1]: s = ["a","b","c"]
    ...: for i ,v in enumerate(s,1):
    ...:     print(i,v)
    ...:
1 a
2 b
3 c
复制代码

22 计算表达式

将字符串str 当成有效的表达式来求值并返回计算结果取出字符串中内容

In [1]: s = "1 + 3 +5"
    ...: eval(s)
    ...:
Out[1]: 9
复制代码

23 查看变量所占字节数

In [1]: import sys

In [2]: a = {'a':1,'b':2.0}

In [3]: sys.getsizeof(a) # 占用240个字节
Out[3]: 240
复制代码

24 过滤器  

在函数中设定过滤条件,迭代元素,保留返回值为True的元素:

In [1]: fil = filter(lambda x: x>10,[1,11,2,45,7,6,13])

In [2]: list(fil)
Out[2]: [11, 45, 13]
复制代码

25 转为浮点类型 

将一个整数或数值型字符串转换为浮点数

In [1]: float(3)
Out[1]: 3.0
复制代码

如果不能转化为浮点数,则会报ValueError:

In [2]: float('a')
ValueError                                Traceback (most recent call last)
 in ()
----> 1 float('a')

ValueError: could not convert string to float: 'a'

复制代码

26 字符串格式化 

格式化输出字符串,format(value, format_spec)实质上是调用了value的__format__(format_spec)方法。

In [104]: print("i am {0},age{1}".format("tom",18))
i am tom,age18
复制代码
3.1415926 {:.2f} 3.14 保留小数点后两位
3.1415926 {:+.2f} +3.14 带符号保留小数点后两位
-1 {:+.2f} -1.00 带符号保留小数点后两位
2.71828 {:.0f} 3 不带小数
5 {:0>2d} 05 数字补零 (填充左边, 宽度为2)
5 {:x<4d} 5xxx 数字补x (填充右边, 宽度为4)
10 {:x<4d} 10xx 数字补x (填充右边, 宽度为4)
1000000 {:,} 1,000,000 以逗号分隔的数字格式
0.25 {:.2%} 25.00% 百分比格式
1000000000 {:.2e} 1.00e+09 指数记法
18 {:>10d} ' 18' 右对齐 (默认, 宽度为10)
18 {:<10d} '18 ' 左对齐 (宽度为10)
18 {:^10d} ' 18 ' 中间对齐 (宽度为10)

27 冻结集合  

创建一个不可修改的集合。

In [1]: frozenset([1,1,3,2,3])
Out[1]: frozenset({1, 2, 3})
复制代码

因为不可修改,所以没有像set那样的addpop方法

28 动态获取对象属性 

获取对象的属性

In [1]: class Student():
   ...:     def __init__(self,id,name):
   ...:         self.id = id
   ...:         self.name = name
   ...:     def __repr__(self):
   ...:         return 'id = '+self.id +', name = '+self.name

In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: getattr(xiaoming,'name') # 获取xiaoming这个实例的name属性值
Out[3]: 'xiaoming'
复制代码

29 对象是否有这个属性

In [1]: class Student():
   ...:     def __init__(self,id,name):
   ...:         self.id = id
   ...:         self.name = name
   ...:     def __repr__(self):
   ...:         return 'id = '+self.id +', name = '+self.name

In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: hasattr(xiaoming,'name')
Out[3]: True

In [4]: hasattr(xiaoming,'address')
Out[4]: False
复制代码

30 返回对象的哈希值  

返回对象的哈希值,值得注意的是自定义的实例都是可哈希的,list, dict, set等可变对象都是不可哈希的(unhashable)

In [1]: hash(xiaoming)
Out[1]: 6139638

In [2]: hash([1,2,3])
TypeError                                 Traceback (most recent call last)
 in ()
----> 1 hash([1,2,3])

TypeError: unhashable type: 'list'
复制代码

31 一键帮助 

返回对象的帮助文档

In [1]: help(xiaoming)
Help on Student in module __main__ object:

class Student(builtins.object)
 |  Methods defined here:
 |
 |  __init__(self, id, name)
 |
 |  __repr__(self)
 |
 |  Data descriptors defined here:
 |
 |  __dict__
 |      dictionary for instance variables (if defined)
 |
 |  __weakref__
 |      list of weak references to the object (if defined)
复制代码

32 对象门牌号 

返回对象的内存地址

In [1]: id(xiaoming)
Out[1]: 98234208
复制代码

33 获取用户输入 

获取用户输入内容

In [1]: input()
aa
Out[1]: 'aa'
复制代码

34 转为整型  

int(x, base =10) , x可能为字符串或数值,将x 转换为一个普通整数。如果参数是字符串,那么它可能包含符号和小数点。如果超出了普通整数的表示范围,一个长整数被返回。

In [1]: int('12',16)
Out[1]: 18
复制代码

35 isinstance

判断object是否为类classinfo的实例,是返回true

In [1]: class Student():
   ...:     def __init__(self,id,name):
   ...:         self.id = id
   ...:         self.name = name
   ...:     def __repr__(self):
   ...:         return 'id = '+self.id +', name = '+self.name

In [2]: xiaoming = Student(id='001',name='xiaoming')

In [3]: isinstance(xiaoming,Student)
Out[3]: True
复制代码

36 父子关系鉴定

In [1]: class undergraduate(Student):
    ...:     def studyClass(self):
    ...:         pass
    ...:     def attendActivity(self):
    ...:         pass

In [2]: issubclass(undergraduate,Student)
Out[2]: True

In [3]: issubclass(object,Student)
Out[3]: False

In [4]: issubclass(Student,object)
Out[4]: True
复制代码

如果class是classinfo元组中某个元素的子类,也会返回True

In [1]: issubclass(int,(int,float))
Out[1]: True
复制代码

37 创建迭代器类型

使用iter(obj, sentinel), 返回一个可迭代对象, sentinel可省略(一旦迭代到此元素,立即终止)

In [1]: lst = [1,3,5]

In [2]: for i in iter(lst):
    ...:     print(i)
    ...:
1
3
5
复制代码
In [1]: class TestIter(object):
    ...:     def __init__(self):
    ...:         self.l=[1,3,2,3,4,5]
    ...:         self.i=iter(self.l)
    ...:     def __call__(self):  #定义了__call__方法的类的实例是可调用的
    ...:         item = next(self.i)
    ...:         print ("__call__ is called,fowhich would return",item)
    ...:         return item
    ...:     def __iter__(self): #支持迭代协议(即定义有__iter__()函数)
    ...:         print ("__iter__ is called!!")
    ...:         return iter(self.l)
In [2]: t = TestIter()
In [3]: t() # 因为实现了__call__,所以t实例能被调用
__call__ is called,which would return 1
Out[3]: 1

In [4]: for e in TestIter(): # 因为实现了__iter__方法,所以t能被迭代
    ...:     print(e)
    ...: 
__iter__ is called!!
1
3
2
3
4
5

44 所有对象之根

object 是所有类的基类

In [1]: o = object()

In [2]: type(o)
Out[2]: object
复制代码

45 打开文件

返回文件对象

In [1]: fo = open('D:/a.txt',mode='r', encoding='utf-8')

In [2]: fo.read()
Out[2]: '\ufefflife is not so long,\nI use Python to play.'
复制代码

mode取值表:

字符 意义
'r' 读取(默认)
'w' 写入,并先截断文件
'x' 排它性创建,如果文件已存在则失败
'a' 写入,如果文件存在则在末尾追加
'b' 二进制模式
't' 文本模式(默认)
'+' 打开用于更新(读取与写入)

46 次幂

base为底的exp次幂,如果mod给出,取余

In [1]: pow(3, 2, 4)
Out[1]: 1
复制代码

47 打印

In [5]: lst = [1,3,5]

In [6]: print(lst)
[1, 3, 5]

In [7]: print(f'lst: {lst}')
lst: [1, 3, 5]

In [8]: print('lst:{}'.format(lst))
lst:[1, 3, 5]

In [9]: print('lst:',lst)
lst: [1, 3, 5]
复制代码

48 创建属性的两种方式

返回 property 属性,典型的用法:

class C:
    def __init__(self):
        self._x = None

    def getx(self):
        return self._x

    def setx(self, value):
        self._x = value

    def delx(self):
        del self._x
    # 使用property类创建 property 属性
    x = property(getx, setx, delx, "I'm the 'x' property.")
复制代码

使用python装饰器,实现与上完全一样的效果代码:

class C:
    def __init__(self):
        self._x = None

    @property
    def x(self):
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x
复制代码

49 创建range序列

  1. range(stop)
  2. range(start, stop[,step])

生成一个不可变序列:

In [1]: range(11)
Out[1]: range(0, 11)

In [2]: range(0,11,1)
Out[2]: range(0, 11)
复制代码

50 反向迭代器

In [1]: rev = reversed([1,4,2,3,1])

In [2]: for i in rev:
     ...:     print(i)
     ...:
1
3
2
4
1
复制代码

51 四舍五入

四舍五入,ndigits代表小数点后保留几位:

In [11]: round(10.0222222, 3)
Out[11]: 10.022

In [12]: round(10.05,1)
Out[12]: 10.1
复制代码

52 转为集合类型

返回一个set对象,集合内不允许有重复元素:

In [159]: a = [1,4,2,3,1]

In [160]: set(a)
Out[160]: {1, 2, 3, 4}
复制代码

53 转为切片对象

class slice(start, stop[, step])

返回一个表示由 range(start, stop, step) 所指定索引集的 slice对象,它让代码可读性、可维护性变好。

In [1]: a = [1,4,2,3,1]

In [2]: my_slice_meaning = slice(0,5,2)

In [3]: a[my_slice_meaning]
Out[3]: [1, 2, 1]
复制代码

54 拿来就用的排序函数

排序:

In [1]: a = [1,4,2,3,1]

In [2]: sorted(a,reverse=True)
Out[2]: [4, 3, 2, 1, 1]

In [3]: a = [{'name':'xiaoming','age':18,'gender':'male'},{'name':'
     ...: xiaohong','age':20,'gender':'female'}]
In [4]: sorted(a,key=lambda x: x['age'],reverse=False)
Out[4]:
[{'name': 'xiaoming', 'age': 18, 'gender': 'male'},
 {'name': 'xiaohong', 'age': 20, 'gender': 'female'}]
复制代码

55 求和函数

求和:

In [181]: a = [1,4,2,3,1]

In [182]: sum(a)
Out[182]: 11

In [185]: sum(a,10) #求和的初始值为10
Out[185]: 21
复制代码

56 转元组

tuple() 将对象转为一个不可变的序列类型

In [16]: i_am_list = [1,3,5]
In [17]: i_am_tuple = tuple(i_am_list)
In [18]: i_am_tuple
Out[18]: (1, 3, 5)
复制代码

57 查看对象类型

class type(name, bases, dict)

传入一个参数时,返回 object 的类型:

In [1]: class Student():
   ...:     def __init__(self,id,name):
   ...:         self.id = id
   ...:         self.name = name
   ...:     def __repr__(self):
   ...:         return 'id = '+self.id +', name = '+self.name
   ...: 
   ...: 

In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: type(xiaoming)
Out[3]: __main__.Student

In [4]: type(tuple())
Out[4]: tuple
复制代码

58 聚合迭代器

创建一个聚合了来自每个可迭代对象中的元素的迭代器:

In [1]: x = [3,2,1]
In [2]: y = [4,5,6]
In [3]: list(zip(y,x))
Out[3]: [(4, 3), (5, 2), (6, 1)]

In [4]: a = range(5)
In [5]: b = list('abcde')
In [6]: b
Out[6]: ['a', 'b', 'c', 'd', 'e']
In [7]: [str(y) + str(x) for x,y in zip(a,b)]
Out[7]: ['a0', 'b1', 'c2', 'd3', 'e4']
复制代码

59 nonlocal用于内嵌函数中

关键词nonlocal常用于函数嵌套中,声明变量i为非局部变量; 如果不声明,i+=1表明i为函数wrapper内的局部变量,因为在i+=1引用(reference)时,i未被声明,所以会报unreferenced variable的错误。

def excepter(f):
    i = 0
    t1 = time.time()
    def wrapper(): 
        try:
            f()
        except Exception as e:
            nonlocal i
            i += 1
            print(f'{e.args[0]}: {i}')
            t2 = time.time()
            if i == n:
                print(f'spending time:{round(t2-t1,2)}')
    return wrapper
复制代码

60 global 声明全局变量

先回答为什么要有global,一个变量被多个函数引用,想让全局变量被所有函数共享。有的伙伴可能会想这还不简单,这样写:

i = 5
def f():
    print(i)

def g():
    print(i)
    pass

f()
g()

复制代码

f和g两个函数都能共享变量i,程序没有报错,所以他们依然不明白为什么要用global.

但是,如果我想要有个函数对i递增,这样:

def h():
    i += 1

h()
复制代码

此时执行程序,bang, 出错了! 抛出异常:UnboundLocalError,原来编译器在解释i+=1时会把i解析为函数h()内的局部变量,很显然在此函数内,编译器找不到对变量i的定义,所以会报错。

global就是为解决此问题而被提出,在函数h内,显示地告诉编译器i为全局变量,然后编译器会在函数外面寻找i的定义,执行完i+=1后,i还为全局变量,值加1:

i = 0
def h():
    global i
    i += 1

h()
print(i)
复制代码

61 链式比较

i = 3
print(1 < i < 3)  # False
print(1 < i <= 3)  # True
复制代码

62 不用else和if实现计算器

from operator import *


def calculator(a, b, k):
    return {
        '+': add,
        '-': sub,
        '*': mul,
        '/': truediv,
        '**': pow
    }[k](a, b)


calculator(1, 2, '+')  # 3
calculator(3, 4, '**')  # 81
复制代码

63 链式操作

from operator import (add, sub)


def add_or_sub(a, b, oper):
    return (add if oper == '+' else sub)(a, b)


add_or_sub(1, 2, '-')  # -1
复制代码

64 交换两元素

def swap(a, b):
    return b, a


print(swap(1, 0))  # (0,1)
复制代码

65 去最求平均

def score_mean(lst):
    lst.sort()
    lst2=lst[1:(len(lst)-1)]
    return round((sum(lst2)/len(lst2)),1)

lst=[9.1, 9.0,8.1, 9.7, 19,8.2, 8.6,9.8]
score_mean(lst) # 9.1
复制代码

66 打印99乘法表

打印出如下格式的乘法表

1*1=1
1*2=2   2*2=4
1*3=3   2*3=6   3*3=9
1*4=4   2*4=8   3*4=12  4*4=16
1*5=5   2*5=10  3*5=15  4*5=20  5*5=25
1*6=6   2*6=12  3*6=18  4*6=24  5*6=30  6*6=36
1*7=7   2*7=14  3*7=21  4*7=28  5*7=35  6*7=42  7*7=49
1*8=8   2*8=16  3*8=24  4*8=32  5*8=40  6*8=48  7*8=56  8*8=64
1*9=9   2*9=18  3*9=27  4*9=36  5*9=45  6*9=54  7*9=63  8*9=72  9*9=81
复制代码

一共有10 行,第i行的第j列等于:j*i

其中,

i取值范围:1<=i<=9

j取值范围:1<=j<=i

根据例子分析的语言描述,转化为如下代码:

for i in range(1,10):
    ...:     for j in range(1,i+1):
    ...:         print('%d*%d=%d'%(j,i,j*i),end="\t")
    ...:     print()

67 全展开

对于如下数组:

[[[1,2,3],[4,5]]]
复制代码

如何完全展开成一维的。这个小例子实现的flatten是递归版,两个参数分别表示带展开的数组,输出数组。

from collections.abc import *

def flatten(lst, out_lst=None):
    if out_lst is None:
        out_lst = []
    for i in lst:
        if isinstance(i, Iterable): # 判断i是否可迭代
            flatten(i, out_lst)  # 尾数递归
        else:
            out_lst.append(i)    # 产生结果
    return out_lst
复制代码

调用flatten:

print(flatten([[1,2,3],[4,5]]))
print(flatten([[1,2,3],[4,5]], [6,7]))
print(flatten([[[1,2,3],[4,5,6]]]))
# 结果:
[1, 2, 3, 4, 5]
[6, 7, 1, 2, 3, 4, 5]
[1, 2, 3, 4, 5, 6]
复制代码

numpy里的flatten与上面的函数实现有些微妙的不同:

import numpy
b = numpy.array([[1,2,3],[4,5]])
b.flatten()
array([list([1, 2, 3]), list([4, 5])], dtype=object)
复制代码

68 列表等分

from math import ceil

def divide(lst, size):
    if size <= 0:
        return [lst]
    return [lst[i * size:(i+1)*size] for i in range(0, ceil(len(lst) / size))]


r = divide([1, 3, 5, 7, 9], 2)
print(r)  # [[1, 3], [5, 7], [9]]

r = divide([1, 3, 5, 7, 9], 0)
print(r)  # [[1, 3, 5, 7, 9]]

r = divide([1, 3, 5, 7, 9], -3)
print(r)  # [[1, 3, 5, 7, 9]]

复制代码

69 列表压缩

def filter_false(lst):
    return list(filter(bool, lst))


r = filter_false([None, 0, False, '', [], 'ok', [1, 2]])
print(r)  # ['ok', [1, 2]]

复制代码

70 更长列表

def max_length(*lst):
    return max(*lst, key=lambda v: len(v))


r = max_length([1, 2, 3], [4, 5, 6, 7], [8])
print(f'更长的列表是{r}')  # [4, 5, 6, 7]

r = max_length([1, 2, 3], [4, 5, 6, 7], [8, 9])
print(f'更长的列表是{r}')  # [4, 5, 6, 7]
复制代码

71 求众数

def top1(lst):
    return max(lst, default='列表为空', key=lambda v: lst.count(v))

lst = [1, 3, 3, 2, 1, 1, 2]
r = top1(lst)
print(f'{lst}中出现次数最多的元素为:{r}')  # [1, 3, 3, 2, 1, 1, 2]中出现次数最多的元素为:1
复制代码

72 多表之最

def max_lists(*lst):
    return max(max(*lst, key=lambda v: max(v)))


r = max_lists([1, 2, 3], [6, 7, 8], [4, 5])
print(r)  # 8
复制代码

73 列表查重

def has_duplicates(lst):
    return len(lst) == len(set(lst))


x = [1, 1, 2, 2, 3, 2, 3, 4, 5, 6]
y = [1, 2, 3, 4, 5]
has_duplicates(x)  # False
has_duplicates(y)  # True
复制代码

74 列表反转

def reverse(lst):
    return lst[::-1]


r = reverse([1, -2, 3, 4, 1, 2])
print(r)  # [2, 1, 4, 3, -2, 1]
复制代码

75 浮点数等差数列

def rang(start, stop, n):
    start,stop,n = float('%.2f' % start), float('%.2f' % stop),int('%.d' % n)
    step = (stop-start)/n
    lst = [start]
    while n > 0:
        start,n = start+step,n-1
        lst.append(round((start), 2))
    return lst

rang(1, 8, 10) # [1.0, 1.7, 2.4, 3.1, 3.8, 4.5, 5.2, 5.9, 6.6, 7.3, 8.0]
复制代码

76 按条件分组

def bif_by(lst, f):
    return [ [x for x in lst if f(x)],[x for x in lst if not f(x)]]

records = [25,89,31,34] 
bif_by(records, lambda x: x<80) # [[25, 31, 34], [89]]
复制代码

77 map实现向量运算

#多序列运算函数—map(function,iterabel,iterable2)
lst1=[1,2,3,4,5,6]
lst2=[3,4,5,6,3,2]
list(map(lambda x,y:x*y+1,lst1,lst2))
### [4, 9, 16, 25, 16, 13]
复制代码

78 值最大的字典

def max_pairs(dic):
    if len(dic) == 0:
        return dic
    max_val = max(map(lambda v: v[1], dic.items()))
    return [item for item in dic.items() if item[1] == max_val]


r = max_pairs({'a': -10, 'b': 5, 'c': 3, 'd': 5})
print(r)  # [('b', 5), ('d', 5)]
复制代码

79 合并两个字典

def merge_dict2(dic1, dic2):
    return {**dic1, **dic2}  # python3.5后支持的一行代码实现合并字典

merge_dict({'a': 1, 'b': 2}, {'c': 3})  # {'a': 1, 'b': 2, 'c': 3}
复制代码

80 topn字典

from heapq import nlargest

# 返回字典d前n个最大值对应的键

def topn_dict(d, n):
    return nlargest(n, d, key=lambda k: d[k])

topn_dict({'a': 10, 'b': 8, 'c': 9, 'd': 10}, 3)  # ['a', 'd', 'c']
复制代码

81 异位词

from collections import Counter

# 检查两个字符串是否 相同字母异序词,简称:互为变位词

def anagram(str1, str2):
    return Counter(str1) == Counter(str2)

anagram('eleven+two', 'twelve+one')  # True 这是一对神器的变位词
anagram('eleven', 'twelve')  # False
复制代码

82 逻辑上合并字典

(1) 两种合并字典方法 这是一般的字典合并写法

dic1 = {'x': 1, 'y': 2 }
dic2 = {'y': 3, 'z': 4 }
merged1 = {**dic1, **dic2} # {'x': 1, 'y': 3, 'z': 4}
复制代码

修改merged['x']=10,dic1中的x值不变merged是重新生成的一个新字典

但是,ChainMap却不同,它在内部创建了一个容纳这些字典的列表。因此使用ChainMap合并字典,修改merged['x']=10后,dic1中的x值改变,如下所示:

from collections import ChainMap
merged2 = ChainMap(dic1,dic2)
print(merged2) # ChainMap({'x': 1, 'y': 2}, {'y': 3, 'z': 4})
复制代码

83 命名元组提高可读性

from collections import namedtuple
Point = namedtuple('Point', ['x', 'y', 'z'])  # 定义名字为Point的元祖,字段属性有x,y,z
lst = [Point(1.5, 2, 3.0), Point(-0.3, -1.0, 2.1), Point(1.3, 2.8, -2.5)]
print(lst[0].y - lst[1].y)
复制代码

使用命名元组写出来的代码可读性更好,尤其处理上百上千个属性时作用更加凸显。

84 样本抽样

使用sample抽样,如下例子从100个样本中随机抽样10个。

from random import randint,sample
lst = [randint(0,50) for _ in range(100)]
print(lst[:5])# [38, 19, 11, 3, 6]
lst_sample = sample(lst,10)
print(lst_sample) # [33, 40, 35, 49, 24, 15, 48, 29, 37, 24]
复制代码

85 重洗数据集

使用shuffle用来重洗数据集,值得注意shuffle是对lst就地(in place)洗牌,节省存储空间

from random import shuffle
lst = [randint(0,50) for _ in range(100)]
shuffle(lst)
print(lst[:5]) # [50, 3, 48, 1, 26]
复制代码

86 10个均匀分布的坐标点

random模块中的uniform(a,b)生成[a,b)内的一个随机数,如下生成10个均匀分布的二维坐标点

from random import uniform
In [1]: [(uniform(0,10),uniform(0,10)) for _ in range(10)]
Out[1]: 
[(9.244361194237328, 7.684326645514235),
 (8.129267671737324, 9.988395854203773),
 (9.505278771040661, 2.8650440524834107),
 (3.84320100484284, 1.7687190176304601),
 (6.095385729409376, 2.377133802224657),
 (8.522913365698605, 3.2395995841267844),
 (8.827829601859406, 3.9298809217233766),
 (1.4749644859469302, 8.038753079253127),
 (9.005430657826324, 7.58011186920019),
 (8.700789540392917, 1.2217577293254112)]
复制代码

87 10个高斯分布的坐标点

random模块中的gauss(u,sigma)生成均值为u, 标准差为sigma的满足高斯分布的值,如下生成10个二维坐标点,样本误差(y-2*x-1)满足均值为0,标准差为1的高斯分布:

from random import gauss
x = range(10)
y = [2*xi+1+gauss(0,1) for xi in x]
points = list(zip(x,y))
### 10个二维点:
[(0, -0.86789025305992),
 (1, 4.738439437453464),
 (2, 5.190278040856102),
 (3, 8.05270893133576),
 (4, 9.979481700775292),
 (5, 11.960781766216384),
 (6, 13.025427054303737),
 (7, 14.02384035204836),
 (8, 15.33755823101161),
 (9, 17.565074449028497)]
复制代码

88 chain高效串联多个容器对象

chain函数串联a和b,兼顾内存效率同时写法更加优雅。

from itertools import chain
a = [1,3,5,0]
b = (2,4,6)

for i in chain(a,b):
  print(i)
### 结果
1
3
5
0
2
4
6
复制代码

89 操作函数对象

In [31]: def f():
    ...:     print('i\'m f')
    ...:

In [32]: def g():
    ...:     print('i\'m g')
    ...:

In [33]: [f,g][1]()
i'm g
复制代码

创建函数对象的list,根据想要调用的index,方便统一调用。

90 生成逆序序列

list(range(10,-1,-1)) # [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
复制代码

第三个参数为负时,表示从第一个参数开始递减,终止到第二个参数(不包括此边界)

你可能感兴趣的:(Python例子大全,软件测试,Python)