1,导入包
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
2,方便大家操作,将月份和参选人以及所在政党进行定义
months = {'JAN' : 1, 'FEB' : 2, 'MAR' : 3, 'APR' : 4, 'MAY' : 5, 'JUN' : 6,
'JUL' : 7, 'AUG' : 8, 'SEP' : 9, 'OCT': 10, 'NOV': 11, 'DEC' : 12}
of_interest = ['Obama, Barack', 'Romney, Mitt', 'Santorum, Rick',
'Paul, Ron', 'Gingrich, Newt']
parties = {
'Bachmann, Michelle': 'Republican',
'Romney, Mitt': 'Republican',
'Obama, Barack': 'Democrat',
"Roemer, Charles E. 'Buddy' III": 'Reform',
'Pawlenty, Timothy': 'Republican',
'Johnson, Gary Earl': 'Libertarian',
'Paul, Ron': 'Republican',
'Santorum, Rick': 'Republican',
'Cain, Herman': 'Republican',
'Gingrich, Newt': 'Republican',
'McCotter, Thaddeus G': 'Republican',
'Huntsman, Jon': 'Republican',
'Perry, Rick': 'Republican'
}
3,读取文件
table = pd.read_csv('data/usa_election.txt')
table.head()
4,使用map函数+字典,新建一列各个候选人所在党派party
table['party'] = table['cand_nm'].map(parties)
table.head()
5,party这一列中有哪些元素
table['party'].unique()
array(['Republican', 'Democrat', 'Reform', 'Libertarian'], dtype=object)
6,使用value_counts()函数,统计party列中各个元素出现次数,value_counts()是Series中的,无参,返回一个带有每个元素出现次数的Series
table['party'].value_counts()
Democrat 292400 Republican 237575 Reform 5364 Libertarian 702 Name: party, dtype: int64
7,使用groupby()函数,查看各个党派收到的政治献金总数contb_receipt_amt
table.groupby(by='party')['contb_receipt_amt'].sum()
party Democrat 8.105758e+07 Libertarian 4.132769e+05 Reform 3.390338e+05 Republican 1.192255e+08 Name: contb_receipt_amt, dtype: float64
8,查看具体每天各个党派收到的政治献金总数contb_receipt_amt 。使用groupby([多个分组参数])
table.groupby(by=['party','contb_receipt_dt'])['contb_receipt_amt'].sum()
9,将表中日期格式转换为'yyyy-mm-dd'。日期格式,通过函数加map方式进行转换
def trasform_date(d):
day,month,year = d.split('-')
month = months[month]
return "20"+year+'-'+str(month)+'-'+day
table['contb_receipt_dt'] = table['contb_receipt_dt'].apply(trasform_date)
table.head()
10,查看老兵(捐献者职业)DISABLED VETERAN主要支持谁 :查看老兵们捐赠给谁的钱最多
table['contbr_occupation'] == 'DISABLED VETERAN'
old_bing_df = table.loc[table['contbr_occupation'] == 'DISABLED VETERAN']
old_bing_df.groupby(by='cand_nm')['contb_receipt_amt'].sum()
cand_nm Cain, Herman 300.00 Obama, Barack 4205.00 Paul, Ron 2425.49 Santorum, Rick 250.00 Name: contb_receipt_amt, dtype: float64
table['contb_receipt_amt'].max()
1944042.43
11,找出候选人的捐赠者中,捐赠金额最大的人的职业以及捐献额 .通过query("查询条件来查找捐献人职业")
table.query('contb_receipt_amt == 1944042.43')