解 由于 0 ⩽ x 2 + y 2 ∣ x ∣ + ∣ y ∣ = x 2 ∣ x ∣ + ∣ y ∣ + y 2 ∣ x ∣ + ∣ y ∣ ⩽ x 2 ∣ x ∣ + y 2 ∣ y ∣ = ∣ x ∣ + ∣ y ∣ 0\leqslant\cfrac{x^2+y^2}{|x|+|y|}=\cfrac{x^2}{|x|+|y|}+\cfrac{y^2}{|x|+|y|}\leqslant\cfrac{x^2}{|x|}+\cfrac{y^2}{|y|}=|x|+|y| 0⩽∣x∣+∣y∣x2+y2=∣x∣+∣y∣x2+∣x∣+∣y∣y2⩽∣x∣x2+∣y∣y2=∣x∣+∣y∣,而 lim y → 0 x → 0 ( ∣ x ∣ + ∣ y ∣ ) = 0 \lim\limits_{y\to0 \atop x\to0}(|x|+|y|)=0 x→0y→0lim(∣x∣+∣y∣)=0,由夹挤定理知 lim y → 0 x → 0 x 2 + y 2 ∣ x ∣ + ∣ y ∣ = 0 \lim\limits_{y\to0 \atop x\to0}\cfrac{x^2+y^2}{|x|+|y|}=0 x→0y→0lim∣x∣+∣y∣x2+y2=0。(这道题主要利用了夹挤定理求解)
解 由于 ∣ 2 x y 2 sin x x 2 + y 4 ∣ ⩽ 1 ( 2 a b ⩽ a 2 + b 2 ) \left|\cfrac{2xy^2\sin x}{x^2+y^4}\right|\leqslant1(2ab\leqslant a^2+b^2) ∣∣∣∣∣x2+y42xy2sinx∣∣∣∣∣⩽1(2ab⩽a2+b2),即为有界量,而 lim x → 0 sin x = 0 \lim\limits_{x\to0}\sin x=0 x→0limsinx=0,即为无穷小量,则原式 = 0 =0 =0。(这道题主要利用了无穷小量代换求解)
证
Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 + Δ x , y 0 ) + f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) . \begin{aligned} \Delta z&=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)\\ &=f(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)+f(x_0+\Delta x,y_0)-f(x_0,y_0). \end{aligned} Δz=f(x0+Δx,y0+Δy)−f(x0,y0)=f(x0+Δx,y0+Δy)−f(x0+Δx,y0)+f(x0+Δx,y0)−f(x0,y0).
由一元拉格朗日中值定理知 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 + Δ x , y 0 ) = f y ′ ( x 0 + Δ x , y 0 + θ 2 Δ y ) Δ y f(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)=f'_y(x_0+\Delta x,y_0+\theta_2\Delta y)\Delta y f(x0+Δx,y0+Δy)−f(x0+Δx,y0)=fy′(x0+Δx,y0+θ2Δy)Δy。由 f y ′ ( x , y ) f'_y(x,y) fy′(x,y)在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,则 lim Δ x → 0 Δ y → 0 f y ′ ( x 0 + Δ x , y 0 + θ 2 Δ y ) = f y ′ ( x 0 , y 0 ) \lim\limits_{\Delta x\to0 \atop \Delta y\to0}f'_y(x_0+\Delta x,y_0+\theta_2\Delta y)=f'_y(x_0,y_0) Δy→0Δx→0limfy′(x0+Δx,y0+θ2Δy)=fy′(x0,y0),从而有 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 + Δ x , y 0 ) = f y ′ ( x 0 , y 0 ) Δ y + ϵ 2 Δ y f(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)=f'_y(x_0,y_0)\Delta y+\epsilon_2\Delta y f(x0+Δx,y0+Δy)−f(x0+Δx,y0)=fy′(x0,y0)Δy+ϵ2Δy,其中 ϵ 2 \epsilon_2 ϵ2为 Δ x → 0 , Δ y → 0 \Delta x\to0,\Delta y\to0 Δx→0,Δy→0时的无穷小量。
又由于 f x ′ ( x , y ) f'_x(x,y) fx′(x,y)存在,则 lim Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = f x ′ ( x 0 , y 0 ) \lim\limits_{\Delta x\to0}\cfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=f'_x(x_0,y_0) Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)=fx′(x0,y0),从而有 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = f x ′ ( x 0 , y 0 ) + ϵ 1 \cfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=f'_x(x_0,y_0)+\epsilon_1 Δxf(x0+Δx,y0)−f(x0,y0)=fx′(x0,y0)+ϵ1,其中 ϵ 1 \epsilon_1 ϵ1为 Δ x → 0 , Δ y → 0 \Delta x\to0,\Delta y\to0 Δx→0,Δy→0时的无穷小量。则 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) = f x ′ ( x 0 , y 0 ) Δ x + ϵ 1 Δ x f(x_0+\Delta x,y_0)-f(x_0,y_0)=f'_x(x_0,y_0)\Delta x+\epsilon_1\Delta x f(x0+Δx,y0)−f(x0,y0)=fx′(x0,y0)Δx+ϵ1Δx。
由于 ∣ ϵ 1 Δ x + ϵ 2 Δ y ( Δ x ) 2 + ( Δ y ) 2 ∣ ⩽ ∣ ϵ 1 ∣ ∣ Δ x ∣ + ∣ ϵ 2 ∣ ∣ Δ y ∣ ( Δ x ) 2 + ( Δ y ) 2 ⩽ ∣ ϵ 1 ∣ + ∣ ϵ 2 ∣ → 0 ( Δ x → 0 , Δ y → 0 ) \left|\cfrac{\epsilon_1\Delta x+\epsilon_2\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\right|\leqslant\cfrac{|\epsilon_1||\Delta x|+|\epsilon_2||\Delta y|}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\leqslant|\epsilon_1|+|\epsilon_2|\to0(\Delta x\to0,\Delta y\to0) ∣∣∣∣∣(Δx)2+(Δy)2ϵ1Δx+ϵ2Δy∣∣∣∣∣⩽(Δx)2+(Δy)2∣ϵ1∣∣Δx∣+∣ϵ2∣∣Δy∣⩽∣ϵ1∣+∣ϵ2∣→0(Δx→0,Δy→0),则当 Δ x → 0 , Δ y → 0 \Delta x\to0,\Delta y\to0 Δx→0,Δy→0时, ϵ 1 Δ x + ϵ 2 Δ y = ο ( ρ ) \epsilon_1\Delta x+\epsilon_2\Delta y=\omicron(\rho) ϵ1Δx+ϵ2Δy=ο(ρ),故 f ( x , y ) f(x,y) f(x,y)在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微。(这道题主要利用了多元函数极限定义求解)
解
∂ u ∂ x = ∂ u ∂ ξ + ∂ u ∂ η , ∂ 2 u ∂ x 2 = ∂ 2 u ∂ ξ 2 + 2 ∂ 2 u ∂ ξ ∂ η + ∂ 2 u ∂ η 2 , ∂ u ∂ y = a ∂ u ∂ ξ + b ∂ u ∂ η , ∂ 2 u ∂ y 2 = a 2 ∂ 2 u ∂ ξ 2 + 2 a b ∂ 2 u ∂ ξ ∂ η + b 2 ∂ 2 u ∂ η 2 , ∂ 2 u ∂ x ∂ y = a 2 ∂ 2 u ∂ ξ 2 + ( a + b ) ∂ 2 u ∂ ξ ∂ η + b ∂ 2 u ∂ η 2 , \cfrac{\partial u}{\partial x}=\cfrac{\partial u}{\partial\xi}+\cfrac{\partial u}{\partial\eta},\cfrac{\partial^2u}{\partial x^2}=\cfrac{\partial^2u}{\partial\xi^2}+2\cfrac{\partial^2u}{\partial\xi\partial\eta}+\cfrac{\partial^2u}{\partial\eta^2},\\ \cfrac{\partial u}{\partial y}=a\cfrac{\partial u}{\partial\xi}+b\cfrac{\partial u}{\partial\eta},\cfrac{\partial^2u}{\partial y^2}=a^2\cfrac{\partial^2u}{\partial\xi^2}+2ab\cfrac{\partial^2u}{\partial\xi\partial\eta}+b^2\cfrac{\partial^2u}{\partial\eta^2},\\ \cfrac{\partial^2u}{\partial x\partial y}=a^2\cfrac{\partial^2u}{\partial\xi^2}+(a+b)\cfrac{\partial^2u}{\partial\xi\partial\eta}+b\cfrac{\partial^2u}{\partial\eta^2}, ∂x∂u=∂ξ∂u+∂η∂u,∂x2∂2u=∂ξ2∂2u+2∂ξ∂η∂2u+∂η2∂2u,∂y∂u=a∂ξ∂u+b∂η∂u,∂y2∂2u=a2∂ξ2∂2u+2ab∂ξ∂η∂2u+b2∂η2∂2u,∂x∂y∂2u=a2∂ξ2∂2u+(a+b)∂ξ∂η∂2u+b∂η2∂2u,
将以上三个二阶偏导数代入等式 4 ∂ 2 u ∂ x 2 + 12 ∂ 2 u ∂ x ∂ y + 5 ∂ 2 u ∂ y 2 = 0 4\cfrac{\partial^2u}{\partial x^2}+12\cfrac{\partial^2u}{\partial x\partial y}+5\cfrac{\partial^2u}{\partial y^2}=0 4∂x2∂2u+12∂x∂y∂2u+5∂y2∂2u=0得 ( 5 a 2 + 12 a + 4 ) ∂ 2 u ∂ ξ 2 + [ 10 a b + 12 ( a + b ) + 8 ] ∂ 2 u ∂ x ∂ y + ( 5 b 2 + 12 b + 4 ) ∂ 2 u ∂ y 2 = 0 (5a^2+12a+4)\cfrac{\partial^2u}{\partial\xi^2}+[10ab+12(a+b)+8]\cfrac{\partial^2u}{\partial x\partial y}+(5b^2+12b+4)\cfrac{\partial^2u}{\partial y^2}=0 (5a2+12a+4)∂ξ2∂2u+[10ab+12(a+b)+8]∂x∂y∂2u+(5b2+12b+4)∂y2∂2u=0。
由题设知 { 5 a 2 + 12 a + 4 = 0 , 5 b 2 + 12 b + 4 = 0 , \begin{cases}5a^2+12a+4=0,\\5b^2+12b+4=0,\end{cases} {5a2+12a+4=0,5b2+12b+4=0,但 10 a b + 12 ( a + b ) + 8 ≠ 0 10ab+12(a+b)+8\ne0 10ab+12(a+b)+8=0,解得 { a = − 2 , b = − 2 5 , \begin{cases}a=-2,\\b=-\cfrac{2}{5},\end{cases} ⎩⎨⎧a=−2,b=−52,或 { a = − 2 5 , b = − 2. \begin{cases}a=-\cfrac{2}{5},\\b=-2.\end{cases} ⎩⎨⎧a=−52,b=−2.(这道题主要利用了多元复合函数求导求解)
解 由 ∂ u ∂ θ ≡ 0 \cfrac{\partial u}{\partial\theta}\equiv0 ∂θ∂u≡0知, u u u仅为 r r r的函数,令 u = φ ( r ) u=\varphi(r) u=φ(r),其中 r = x 2 + y 2 , r > 0 r=\sqrt{x^2+y^2},r>0 r=x2+y2,r>0。则
∂ u ∂ x = φ ′ ( r ) x x 2 + y 2 = φ ′ ( x ) x r , ∂ 2 u ∂ x 2 = φ ′ ′ ( x ) x 2 r 2 + φ ′ ( r ) r − x 2 r r 2 = φ ′ ′ ( r ) x 2 r 2 + φ ′ ( r ) ( 1 r − x 2 r 3 ) . \cfrac{\partial u}{\partial x}=\varphi'(r)\cfrac{x}{\sqrt{x^2+y^2}}=\varphi'(x)\cfrac{x}{r},\\ \cfrac{\partial^2u}{\partial x^2}=\varphi''(x)\cfrac{x^2}{r^2}+\varphi'(r)\cfrac{r-\cfrac{x^2}{r}}{r^2}=\varphi''(r)\cfrac{x^2}{r^2}+\varphi'(r)\left(\cfrac{1}{r}-\cfrac{x^2}{r^3}\right). ∂x∂u=φ′(r)x2+y2x=φ′(x)rx,∂x2∂2u=φ′′(x)r2x2+φ′(r)r2r−rx2=φ′′(r)r2x2+φ′(r)(r1−r3x2).
由对称性可得 ∂ 2 u ∂ y 2 = φ ′ ′ ( x ) y 2 r 2 + φ ′ ( r ) ( 1 r − y 2 r 3 ) \cfrac{\partial^2u}{\partial y^2}=\varphi''(x)\cfrac{y^2}{r^2}+\varphi'(r)\left(\cfrac{1}{r}-\cfrac{y^2}{r^3}\right) ∂y2∂2u=φ′′(x)r2y2+φ′(r)(r1−r3y2),则 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = φ ′ ′ ( x ) + φ ′ ( x ) 1 r \cfrac{\partial^2u}{\partial x^2}+\cfrac{\partial^2u}{\partial y^2}=\varphi''(x)+\varphi'(x)\cfrac{1}{r} ∂x2∂2u+∂y2∂2u=φ′′(x)+φ′(x)r1,从而得 φ ′ ′ ( x ) + φ ′ ( x ) 1 r = 0 \varphi''(x)+\varphi'(x)\cfrac{1}{r}=0 φ′′(x)+φ′(x)r1=0。
这是一个不显含 φ ( r ) \varphi(r) φ(r)的可降阶方程,令 φ ′ ( x ) = p \varphi'(x)=p φ′(x)=p,则 φ ′ ′ ( r ) = d p d r \varphi''(r)=\cfrac{\mathrm{d}p}{\mathrm{d}r} φ′′(r)=drdp。代入上式得 d p d r + p r = 0 ⇒ p = C 1 r \cfrac{\mathrm{d}p}{\mathrm{d}r}+\cfrac{p}{r}=0\Rightarrow p=\cfrac{C_1}{r} drdp+rp=0⇒p=rC1,即 φ ′ ( r ) = C 1 r \varphi'(r)=\cfrac{C_1}{r} φ′(r)=rC1,则 φ ( r ) = C 1 ln r + C 2 \varphi(r)=C_1\ln r+C_2 φ(r)=C1lnr+C2,故 u = C 1 ln r + C 2 u=C_1\ln r+C_2 u=C1lnr+C2。(这道题主要利用了微分方程求解)
证 必要性:由于 f ( x , y ) f(x,y) f(x,y)为 n n n次齐次方程,则对任意 t > 0 t>0 t>0,有 f ( t x , t y ) = t n f ( x , y ) f(tx,ty)=t^nf(x,y) f(tx,ty)=tnf(x,y)。该式两端对 t t t求导得 x f 1 ′ ( t x , t y ) + y f 2 ′ ( t x , t y ) = n t n − 1 f ( x , y ) xf'_1(tx,ty)+yf'_2(tx,ty)=nt^{n-1}f(x,y) xf1′(tx,ty)+yf2′(tx,ty)=ntn−1f(x,y)。令 t = 1 t=1 t=1得 x f 1 ′ ( t x , t y ) + y f 2 ′ ( t x , t y ) = n f ( x , y ) xf'_1(tx,ty)+yf'_2(tx,ty)=nf(x,y) xf1′(tx,ty)+yf2′(tx,ty)=nf(x,y),即有 x ∂ f ∂ x + y ∂ f ∂ y = n f ( x , y ) x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}=nf(x,y) x∂x∂f+y∂y∂f=nf(x,y)。
充分性:令 F ( t ) = f ( t x , t y ) ( t > 0 ) F(t)=f(tx,ty)(t>0) F(t)=f(tx,ty)(t>0),则 d F d t = x ∂ f ∂ x + y ∂ f ∂ y \cfrac{\mathrm{d}F}{\mathrm{d}t}=x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y} dtdF=x∂x∂f+y∂y∂f,两边乘以 t t t得 t d F d t = t x ∂ f ∂ x + t y ∂ f ∂ y = n f ( t x , t y ) = n F ( t ) t\cfrac{\mathrm{d}F}{\mathrm{d}t}=tx\cfrac{\partial f}{\partial x}+ty\cfrac{\partial f}{\partial y}=nf(tx,ty)=nF(t) tdtdF=tx∂x∂f+ty∂y∂f=nf(tx,ty)=nF(t)。于是 d F F = n t d t \cfrac{\mathrm{d}F}{F}=\cfrac{n}{t}\mathrm{d}t FdF=tndt,解得 F ( t ) = C t n F(t)=Ct^n F(t)=Ctn。令 t = 1 t=1 t=1得, F ( 1 ) = C F(1)=C F(1)=C,而由 F ( t ) = f ( t x , t y ) F(t)=f(tx,ty) F(t)=f(tx,ty)知 F ( 1 , 1 ) = f ( x , y ) F(1,1)=f(x,y) F(1,1)=f(x,y),则 C = f ( x , y ) C=f(x,y) C=f(x,y)。于是 F ( t ) = t n f ( x , y ) F(t)=t^nf(x,y) F(t)=tnf(x,y),即 f ( t x , t y ) = t n f ( x , y ) f(tx,ty)=t^nf(x,y) f(tx,ty)=tnf(x,y)。(这道题主要利用了多元函数求导求解)
证 设 f ( x , y ) = C f(x,y)=C f(x,y)=C确定的隐函数为 y = y ( x ) y=y(x) y=y(x),等式 f ( x , y ) = C f(x,y)=C f(x,y)=C两端对 x x x求导得 f 1 ′ + f 2 ′ d y d x = 0 ⇒ d y d x = − f 1 ′ f 2 ′ f'_1+f'_2\cfrac{\mathrm{d}y}{\mathrm{d}x}=0\Rightarrow\cfrac{\mathrm{d}y}{\mathrm{d}x}=-\cfrac{f'_1}{f_2'} f1′+f2′dxdy=0⇒dxdy=−f2′f1′。从而有
d 2 y d x 2 = − d d x ( f 1 ′ f 2 ′ ) = − ( f 11 ′ ′ + f 12 ′ ′ d y d x ) f 2 ′ − ( f 21 ′ ′ + f 22 ′ ′ d y d x ) f 1 ′ f 2 ′ 2 = − f 2 ′ 2 f 11 ′ ′ + 2 f 1 ′ f 2 ′ f 12 ′ ′ + f 1 ′ 2 f 22 ′ ′ f 2 ′ 3 \begin{aligned} \cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}&=-\cfrac{\mathrm{d}}{\mathrm{d}x}\left(\cfrac{f'_1}{f_2'}\right)\\ &=-\cfrac{\left(f''_{11}+f''_{12}\cfrac{\mathrm{d}y}{\mathrm{d}x}\right)f'_2-\left(f''_{21}+f''_{22}\cfrac{\mathrm{d}y}{\mathrm{d}x}\right)f'_1}{f'^2_2}\\ &=-\cfrac{f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}}{f'^3_2} \end{aligned} dx2d2y=−dxd(f2′f1′)=−f2′2(f11′′+f12′′dxdy)f2′−(f21′′+f22′′dxdy)f1′=−f2′3f2′2f11′′+2f1′f2′f12′′+f1′2f22′′
必要性:若 f ( x , y ) = C f(x,y)=C f(x,y)=C是一条直线,则由 f ( x , y ) = C f(x,y)=C f(x,y)=C所确定的函数 y = y ( x ) y=y(x) y=y(x)应为线性函数(即 y = a x + b y=ax+b y=ax+b),则 d 2 y d x 2 = 0 \cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}=0 dx2d2y=0,从而有 f 2 ′ 2 f 11 ′ ′ + 2 f 1 ′ f 2 ′ f 12 ′ ′ + f 1 ′ 2 f 22 ′ ′ = 0 f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}=0 f2′2f11′′+2f1′f2′f12′′+f1′2f22′′=0。
充分性:若 f 2 ′ 2 f 11 ′ ′ + 2 f 1 ′ f 2 ′ f 12 ′ ′ + f 1 ′ 2 f 22 ′ ′ = 0 f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}=0 f2′2f11′′+2f1′f2′f12′′+f1′2f22′′=0,则 d 2 y d x 2 = 0 \cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}=0 dx2d2y=0。从而有 y = a x + b y=ax+b y=ax+b,即 f ( x , y ) = C f(x,y)=C f(x,y)=C所确定的隐函数 y = y ( x ) y=y(x) y=y(x)为线性函数。故 f ( x , y ) = C f(x,y)=C f(x,y)=C表示直线。(这道题主要利用了直线函数特征求解)
解 椭圆 x 2 + 4 x y + 5 y 2 = 1 x^2+4xy+5y^2=1 x2+4xy+5y2=1上点 ( x , y ) (x,y) (x,y)到原点 ( 0 , 0 ) (0,0) (0,0)距离平方 d 2 = f ( x , y ) = x 2 + y 2 d^2=f(x,y)=x^2+y^2 d2=f(x,y)=x2+y2。问题归结为求 f ( x , y ) = x 2 + y 2 f(x,y)=x^2+y^2 f(x,y)=x2+y2在条件 x 2 + 4 x y + 5 y 2 = 1 x^2+4xy+5y^2=1 x2+4xy+5y2=1下的最大值和最小值。
令 F ( x , y , λ ) = x 2 + y 2 + λ ( x 2 + 4 x y + 5 y 2 − 1 ) F(x,y,\lambda)=x^2+y^2+\lambda(x^2+4xy+5y^2-1) F(x,y,λ)=x2+y2+λ(x2+4xy+5y2−1),则
{ F x ′ = 2 x + λ ( 2 x − 4 y ) = 0 , ( 1 ) F y ′ = 2 y + λ ( − 4 x + 10 y ) = 0 , ( 2 ) F λ ′ = x 2 + 4 x y + 5 y 2 − 1 , ( 3 ) \begin{cases} F_x'=2x+\lambda(2x-4y)=0,&\qquad(1)\\ F_y'=2y+\lambda(-4x+10y)=0,&\qquad(2)\\ F_\lambda'=x^2+4xy+5y^2-1,&\qquad(3) \end{cases} ⎩⎪⎨⎪⎧Fx′=2x+λ(2x−4y)=0,Fy′=2y+λ(−4x+10y)=0,Fλ′=x2+4xy+5y2−1,(1)(2)(3)
( 1 ) (1) (1)式乘 x 2 \cfrac{x}{2} 2x加 ( 2 ) (2) (2)式乘 y 2 \cfrac{y}{2} 2y得 x 2 + y 2 + λ ( x 2 + 4 x y + 5 y 2 ) = 0 x^2+y^2+\lambda(x^2+4xy+5y^2)=0 x2+y2+λ(x2+4xy+5y2)=0。则 x 2 + y 2 + λ = 0 x^2+y^2+\lambda=0 x2+y2+λ=0,即 x 2 + y 2 = − λ x^2+y^2=-\lambda x2+y2=−λ。
由 ( 1 ) (1) (1)式和 ( 2 ) (2) (2)式知 { ( 1 + λ ) x − 2 λ y = 0 , − 2 λ + ( 1 + 5 λ ) y = 0 , \begin{cases}(1+\lambda)x-2\lambda y=0,\\-2\lambda+(1+5\lambda)y=0,\end{cases} {(1+λ)x−2λy=0,−2λ+(1+5λ)y=0,这是一个关于 x , y x,y x,y的二元线性齐次方程组,由题意知它有非零解,则 ∣ 1 + λ − 2 λ − 2 λ 1 + 5 λ ∣ = 0 \begin{vmatrix}1+\lambda&-2\lambda\\-2\lambda&1+5\lambda\end{vmatrix}=0 ∣∣∣∣1+λ−2λ−2λ1+5λ∣∣∣∣=0,即 λ 2 + 6 λ + 1 = 0 \lambda^2+6\lambda+1=0 λ2+6λ+1=0,得 λ = − 3 ± 2 2 \lambda=-3\pm2\sqrt{2} λ=−3±22。
故长半轴 a = 3 + 2 2 = 1 + 2 a=\sqrt{3+2\sqrt{2}}=1+\sqrt{2} a=3+22=1+2,短半轴 a = 3 − 2 2 = 1 − 2 a=\sqrt{3-2\sqrt{2}}=1-\sqrt{2} a=3−22=1−2。(这道题主要利用了椭圆几何特点求解)
解 由于 lim x → 0 y → 0 x 2 + y 2 = 0 = z ( 0 , 0 ) \lim\limits_{x\to0 \atop y\to0}\sqrt{x^2+y^2}=0=z(0,0) y→0x→0limx2+y2=0=z(0,0),则在 ( 0 , 0 ) (0,0) (0,0)连续,选项 ( A ) (A) (A)不正确。
由于 ∂ z ∂ x ∣ ( 0 , 0 ) = d d x ( z ( x , 0 ) ) ∣ x = 0 = d d x ( ∣ x ∣ ) ∣ x = 0 \cfrac{\partial z}{\partial x}\biggm\vert_{(0,0)}=\cfrac{\mathrm{d}}{\mathrm{d}x}{(z(x,0))}\biggm\vert_{x=0}=\cfrac{\mathrm{d}}{\mathrm{d}x}{(|x|)}\biggm\vert_{x=0} ∂x∂z∣∣∣∣(0,0)=dxd(z(x,0))∣∣∣∣x=0=dxd(∣x∣)∣∣∣∣x=0,而 ∣ x ∣ |x| ∣x∣在 x = 0 x=0 x=0不可导,则 ∂ z ∂ x ∣ ( 0 , 0 ) \cfrac{\partial z}{\partial x}\biggm\vert_{(0,0)} ∂x∂z∣∣∣∣(0,0)不存在。
设 l l l为从原点引出的射线,其方向余弦为 cos α , cos β \cos\alpha,\cos\beta cosα,cosβ,则
∂ l ∂ x ∣ ( 0 , 0 ) = lim t → 0 + f ( t cos α , t cos β ) − f ( 0 , 0 ) t = lim t → 0 + t 2 cos 2 α + t 2 cos 2 β − 0 t = 1. \begin{aligned} \cfrac{\partial l}{\partial x}\biggm\vert_{(0,0)}&=\lim\limits_{t\to0^+}\cfrac{f(t\cos\alpha,t\cos\beta)-f(0,0)}{t}\\ &=\lim\limits_{t\to0^+}\cfrac{\sqrt{t^2\cos^2\alpha+t^2\cos^2\beta}-0}{t}=1. \end{aligned} ∂x∂l∣∣∣∣(0,0)=t→0+limtf(tcosα,tcosβ)−f(0,0)=t→0+limtt2cos2α+t2cos2β−0=1.
这说明函数 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2在点 ( 0 , 0 ) (0,0) (0,0)沿任一方向的方向导数都存在且为1,故应选 ( C ) (C) (C)。(这道题主要利用了方向导数的定义求解)
证 因为 lim ρ → + ∞ ( x ∂ f ∂ x + y ∂ f ∂ y ) = α > 0 \lim\limits_{\rho\to+\infty}\left(x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}\right)=\alpha>0 ρ→+∞lim(x∂x∂f+y∂y∂f)=α>0,由极限保号性知,存在 R > 0 R>0 R>0,当 ρ ⩾ R \rho\geqslant R ρ⩾R时(即 x 2 + y 2 ⩾ R 2 x^2+y^2\geqslant R^2 x2+y2⩾R2时) x ∂ f ∂ x + y ∂ f ∂ y > 0 x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}>0 x∂x∂f+y∂y∂f>0。从而有 x ρ ∂ f ∂ x + y ρ ∂ f ∂ y > 0 \cfrac{x}{\rho}\cfrac{\partial f}{\partial x}+\cfrac{y}{\rho}\cfrac{\partial f}{\partial y}>0 ρx∂x∂f+ρy∂y∂f>0。若 r \bm{r} r用表示点 ( x , y ) (x,y) (x,y)处极径方向的方向导数,由 ( 1 ) (1) (1)式知 ∂ f ∂ r > 0 \cfrac{\partial f}{\partial r}>0 ∂r∂f>0,则 f ( x , y ) f(x,y) f(x,y)在区域 x 2 + y 2 ⩾ R 2 x^2+y^2\geqslant R^2 x2+y2⩾R2上任一点沿极径方向为增函数,由 f ( x , y ) f(x,y) f(x,y)可微性知, f ( x , y ) f(x,y) f(x,y)连续,则 f ( x , y ) f(x,y) f(x,y)在有界闭域 x 2 + y 2 ⩾ R 2 x^2+y^2\geqslant R^2 x2+y2⩾R2上有最小值,由于 f ( x , y ) f(x,y) f(x,y)在 x 2 + y 2 ⩾ R 2 x^2+y^2\geqslant R^2 x2+y2⩾R2上任一点沿极径方向为增函数,则 f ( x , y ) f(x,y) f(x,y)在 x 2 + y 2 ⩾ R 2 x^2+y^2\geqslant R^2 x2+y2⩾R2上的最小值也是在全平面上的最小值。(这道题主要利用了极限的保号性求解)
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。