李永乐复习全书高等数学 第五章 多元函数微分学

目录

  • 5.1  多元函数的极限、连续、偏导数与全微分(概念)
    • 例2  试求下列二次极限:
      • (1) lim ⁡ y → 0 x → 0 x 2 + y 2 ∣ x ∣ + ∣ y ∣ ; \lim\limits_{y\to0 \atop x\to0}\cfrac{x^2+y^2}{|x|+|y|}; x0y0limx+yx2+y2;
      • (4) lim ⁡ y → 0 x → 0 2 x y 2 sin ⁡ x x 2 + y 4 . \lim\limits_{y\to0 \atop x\to0}\cfrac{2xy^2\sin x}{x^2+y^4}. x0y0limx2+y42xy2sinx.
    • 例11  设 f x ′ ( x , y ) f'_x(x,y) fx(x,y)存在, f y ′ ( x , y ) f'_y(x,y) fy(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,证明: f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微。
  • 5.2  多元函数的微分法
    • 例26  设函数 u = f ( x , y ) u=f(x,y) u=f(x,y)具有二阶连续偏导数,且满足 4 ∂ 2 u ∂ x 2 + 12 ∂ 2 u ∂ x ∂ y + 5 ∂ 2 u ∂ y 2 = 0 4\cfrac{\partial^2u}{\partial x^2}+12\cfrac{\partial^2u}{\partial x\partial y}+5\cfrac{\partial^2u}{\partial y^2}=0 4x22u+12xy2u+5y22u=0。确定 a , b a,b a,b的值,使等式 ξ = x + a y , η = x + b y \xi=x+ay,\eta=x+by ξ=x+ay,η=x+by在变换下简化为 ∂ 2 u ∂ ξ ∂ η \cfrac{\partial^2u}{\partial\xi\partial\eta} ξη2u
    • 例28  设 ( r , θ ) (r,\theta) (r,θ)为极坐标, u = u ( r , θ ) u=u(r,\theta) u=u(r,θ) r > 0 r>0 r>0时具有二阶连续偏导数,并满足 ∂ u ∂ θ ≡ 0 \cfrac{\partial u}{\partial\theta}\equiv0 θu0,且 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 \cfrac{\partial^2u}{\partial x^2}+\cfrac{\partial^2u}{\partial y^2}=0 x22u+y22u=0,求 u ( r , θ ) u(r,\theta) u(r,θ)
    • 例29  若对任意 t > 0 t>0 t>0,有 f ( t x , t y ) = t n f ( x , y ) f(tx,ty)=t^nf(x,y) f(tx,ty)=tnf(x,y),则称函数 f ( x , y ) f(x,y) f(x,y) n n n次齐次函数。试证:若 f ( x , y ) f(x,y) f(x,y)可微,则 f ( x , y ) f(x,y) f(x,y) n n n次齐次函数的充要条件是 x ∂ f ∂ x + y ∂ f ∂ y = n f ( x , y ) x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}=nf(x,y) xxf+yyf=nf(x,y)
    • 例36  设 f ( x , y ) f(x,y) f(x,y)有二阶连续偏导数,且 f y ′ ≠ 0 f'_y\ne0 fy=0,证明:对任给的常数 C C C f ( x , y ) = C f(x,y)=C f(x,y)=C为一条直线的充要条件是 f 2 ′ 2 f 11 ′ ′ + 2 f 1 ′ f 2 ′ f 12 ′ ′ + f 1 ′ 2 f 22 ′ ′ = 0 f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}=0 f22f11+2f1f2f12+f12f22=0
  • 5.3  极值与最值
    • 例49  求中心在坐标原点的椭圆 x 2 + 4 x y + 5 y 2 = 1 x^2+4xy+5y^2=1 x2+4xy+5y2=1的长半轴与短半轴。
  • 5.4  方向导数与梯度 多元微分在几何上的应用 泰勒定理
    • 例53  函数 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 在点 ( 0 , 0 ) (0,0) (0,0)处(  )
      ( A ) (A) (A)不连续;
      ( B ) (B) (B)偏导数存在;
      ( C ) (C) (C)沿任一方向方向导数存在;
      ( D ) (D) (D)可微。
    • 例57  设 f ( x , y ) f(x,y) f(x,y) R 2 \bold{R}^2 R2(全平面)上的一个可微函数,且 lim ⁡ ρ → + ∞ ( x ∂ f ∂ x + y ∂ f ∂ y ) = α > 0 \lim\limits_{\rho\to+\infty}\left(x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}\right)=\alpha>0 ρ+lim(xxf+yyf)=α>0,其中 ρ = x 2 + y 2 \rho=\sqrt{x^2+y^2} ρ=x2+y2 α \alpha α为常数。试证明 f ( x , y ) f(x,y) f(x,y) R 2 \bold{R}^2 R2上有最小值。
  • 写在最后

5.1  多元函数的极限、连续、偏导数与全微分(概念)

例2  试求下列二次极限:

(1) lim ⁡ y → 0 x → 0 x 2 + y 2 ∣ x ∣ + ∣ y ∣ ; \lim\limits_{y\to0 \atop x\to0}\cfrac{x^2+y^2}{|x|+|y|}; x0y0limx+yx2+y2;

  由于 0 ⩽ x 2 + y 2 ∣ x ∣ + ∣ y ∣ = x 2 ∣ x ∣ + ∣ y ∣ + y 2 ∣ x ∣ + ∣ y ∣ ⩽ x 2 ∣ x ∣ + y 2 ∣ y ∣ = ∣ x ∣ + ∣ y ∣ 0\leqslant\cfrac{x^2+y^2}{|x|+|y|}=\cfrac{x^2}{|x|+|y|}+\cfrac{y^2}{|x|+|y|}\leqslant\cfrac{x^2}{|x|}+\cfrac{y^2}{|y|}=|x|+|y| 0x+yx2+y2=x+yx2+x+yy2xx2+yy2=x+y,而 lim ⁡ y → 0 x → 0 ( ∣ x ∣ + ∣ y ∣ ) = 0 \lim\limits_{y\to0 \atop x\to0}(|x|+|y|)=0 x0y0lim(x+y)=0,由夹挤定理知 lim ⁡ y → 0 x → 0 x 2 + y 2 ∣ x ∣ + ∣ y ∣ = 0 \lim\limits_{y\to0 \atop x\to0}\cfrac{x^2+y^2}{|x|+|y|}=0 x0y0limx+yx2+y2=0。(这道题主要利用了夹挤定理求解

(4) lim ⁡ y → 0 x → 0 2 x y 2 sin ⁡ x x 2 + y 4 . \lim\limits_{y\to0 \atop x\to0}\cfrac{2xy^2\sin x}{x^2+y^4}. x0y0limx2+y42xy2sinx.

  由于 ∣ 2 x y 2 sin ⁡ x x 2 + y 4 ∣ ⩽ 1 ( 2 a b ⩽ a 2 + b 2 ) \left|\cfrac{2xy^2\sin x}{x^2+y^4}\right|\leqslant1(2ab\leqslant a^2+b^2) x2+y42xy2sinx1(2aba2+b2),即为有界量,而 lim ⁡ x → 0 sin ⁡ x = 0 \lim\limits_{x\to0}\sin x=0 x0limsinx=0,即为无穷小量,则原式 = 0 =0 =0。(这道题主要利用了无穷小量代换求解

例11  设 f x ′ ( x , y ) f'_x(x,y) fx(x,y)存在, f y ′ ( x , y ) f'_y(x,y) fy(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,证明: f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微。


Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 + Δ x , y 0 ) + f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) . \begin{aligned} \Delta z&=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)\\ &=f(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)+f(x_0+\Delta x,y_0)-f(x_0,y_0). \end{aligned} Δz=f(x0+Δx,y0+Δy)f(x0,y0)=f(x0+Δx,y0+Δy)f(x0+Δx,y0)+f(x0+Δx,y0)f(x0,y0).
  由一元拉格朗日中值定理知 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 + Δ x , y 0 ) = f y ′ ( x 0 + Δ x , y 0 + θ 2 Δ y ) Δ y f(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)=f'_y(x_0+\Delta x,y_0+\theta_2\Delta y)\Delta y f(x0+Δx,y0+Δy)f(x0+Δx,y0)=fy(x0+Δx,y0+θ2Δy)Δy。由 f y ′ ( x , y ) f'_y(x,y) fy(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续,则 lim ⁡ Δ x → 0 Δ y → 0 f y ′ ( x 0 + Δ x , y 0 + θ 2 Δ y ) = f y ′ ( x 0 , y 0 ) \lim\limits_{\Delta x\to0 \atop \Delta y\to0}f'_y(x_0+\Delta x,y_0+\theta_2\Delta y)=f'_y(x_0,y_0) Δy0Δx0limfy(x0+Δx,y0+θ2Δy)=fy(x0,y0),从而有 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 + Δ x , y 0 ) = f y ′ ( x 0 , y 0 ) Δ y + ϵ 2 Δ y f(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)=f'_y(x_0,y_0)\Delta y+\epsilon_2\Delta y f(x0+Δx,y0+Δy)f(x0+Δx,y0)=fy(x0,y0)Δy+ϵ2Δy,其中 ϵ 2 \epsilon_2 ϵ2 Δ x → 0 , Δ y → 0 \Delta x\to0,\Delta y\to0 Δx0,Δy0时的无穷小量。
  又由于 f x ′ ( x , y ) f'_x(x,y) fx(x,y)存在,则 lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = f x ′ ( x 0 , y 0 ) \lim\limits_{\Delta x\to0}\cfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=f'_x(x_0,y_0) Δx0limΔxf(x0+Δx,y0)f(x0,y0)=fx(x0,y0),从而有 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = f x ′ ( x 0 , y 0 ) + ϵ 1 \cfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=f'_x(x_0,y_0)+\epsilon_1 Δxf(x0+Δx,y0)f(x0,y0)=fx(x0,y0)+ϵ1,其中 ϵ 1 \epsilon_1 ϵ1 Δ x → 0 , Δ y → 0 \Delta x\to0,\Delta y\to0 Δx0,Δy0时的无穷小量。则 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) = f x ′ ( x 0 , y 0 ) Δ x + ϵ 1 Δ x f(x_0+\Delta x,y_0)-f(x_0,y_0)=f'_x(x_0,y_0)\Delta x+\epsilon_1\Delta x f(x0+Δx,y0)f(x0,y0)=fx(x0,y0)Δx+ϵ1Δx
  由于 ∣ ϵ 1 Δ x + ϵ 2 Δ y ( Δ x ) 2 + ( Δ y ) 2 ∣ ⩽ ∣ ϵ 1 ∣ ∣ Δ x ∣ + ∣ ϵ 2 ∣ ∣ Δ y ∣ ( Δ x ) 2 + ( Δ y ) 2 ⩽ ∣ ϵ 1 ∣ + ∣ ϵ 2 ∣ → 0 ( Δ x → 0 , Δ y → 0 ) \left|\cfrac{\epsilon_1\Delta x+\epsilon_2\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\right|\leqslant\cfrac{|\epsilon_1||\Delta x|+|\epsilon_2||\Delta y|}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\leqslant|\epsilon_1|+|\epsilon_2|\to0(\Delta x\to0,\Delta y\to0) (Δx)2+(Δy)2 ϵ1Δx+ϵ2Δy(Δx)2+(Δy)2 ϵ1Δx+ϵ2Δyϵ1+ϵ20(Δx0,Δy0),则当 Δ x → 0 , Δ y → 0 \Delta x\to0,\Delta y\to0 Δx0,Δy0时, ϵ 1 Δ x + ϵ 2 Δ y = ο ( ρ ) \epsilon_1\Delta x+\epsilon_2\Delta y=\omicron(\rho) ϵ1Δx+ϵ2Δy=ο(ρ),故 f ( x , y ) f(x,y) f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微。(这道题主要利用了多元函数极限定义求解

5.2  多元函数的微分法

例26  设函数 u = f ( x , y ) u=f(x,y) u=f(x,y)具有二阶连续偏导数,且满足 4 ∂ 2 u ∂ x 2 + 12 ∂ 2 u ∂ x ∂ y + 5 ∂ 2 u ∂ y 2 = 0 4\cfrac{\partial^2u}{\partial x^2}+12\cfrac{\partial^2u}{\partial x\partial y}+5\cfrac{\partial^2u}{\partial y^2}=0 4x22u+12xy2u+5y22u=0。确定 a , b a,b a,b的值,使等式 ξ = x + a y , η = x + b y \xi=x+ay,\eta=x+by ξ=x+ay,η=x+by在变换下简化为 ∂ 2 u ∂ ξ ∂ η \cfrac{\partial^2u}{\partial\xi\partial\eta} ξη2u


∂ u ∂ x = ∂ u ∂ ξ + ∂ u ∂ η , ∂ 2 u ∂ x 2 = ∂ 2 u ∂ ξ 2 + 2 ∂ 2 u ∂ ξ ∂ η + ∂ 2 u ∂ η 2 , ∂ u ∂ y = a ∂ u ∂ ξ + b ∂ u ∂ η , ∂ 2 u ∂ y 2 = a 2 ∂ 2 u ∂ ξ 2 + 2 a b ∂ 2 u ∂ ξ ∂ η + b 2 ∂ 2 u ∂ η 2 , ∂ 2 u ∂ x ∂ y = a 2 ∂ 2 u ∂ ξ 2 + ( a + b ) ∂ 2 u ∂ ξ ∂ η + b ∂ 2 u ∂ η 2 , \cfrac{\partial u}{\partial x}=\cfrac{\partial u}{\partial\xi}+\cfrac{\partial u}{\partial\eta},\cfrac{\partial^2u}{\partial x^2}=\cfrac{\partial^2u}{\partial\xi^2}+2\cfrac{\partial^2u}{\partial\xi\partial\eta}+\cfrac{\partial^2u}{\partial\eta^2},\\ \cfrac{\partial u}{\partial y}=a\cfrac{\partial u}{\partial\xi}+b\cfrac{\partial u}{\partial\eta},\cfrac{\partial^2u}{\partial y^2}=a^2\cfrac{\partial^2u}{\partial\xi^2}+2ab\cfrac{\partial^2u}{\partial\xi\partial\eta}+b^2\cfrac{\partial^2u}{\partial\eta^2},\\ \cfrac{\partial^2u}{\partial x\partial y}=a^2\cfrac{\partial^2u}{\partial\xi^2}+(a+b)\cfrac{\partial^2u}{\partial\xi\partial\eta}+b\cfrac{\partial^2u}{\partial\eta^2}, xu=ξu+ηu,x22u=ξ22u+2ξη2u+η22u,yu=aξu+bηu,y22u=a2ξ22u+2abξη2u+b2η22u,xy2u=a2ξ22u+(a+b)ξη2u+bη22u,
  将以上三个二阶偏导数代入等式 4 ∂ 2 u ∂ x 2 + 12 ∂ 2 u ∂ x ∂ y + 5 ∂ 2 u ∂ y 2 = 0 4\cfrac{\partial^2u}{\partial x^2}+12\cfrac{\partial^2u}{\partial x\partial y}+5\cfrac{\partial^2u}{\partial y^2}=0 4x22u+12xy2u+5y22u=0 ( 5 a 2 + 12 a + 4 ) ∂ 2 u ∂ ξ 2 + [ 10 a b + 12 ( a + b ) + 8 ] ∂ 2 u ∂ x ∂ y + ( 5 b 2 + 12 b + 4 ) ∂ 2 u ∂ y 2 = 0 (5a^2+12a+4)\cfrac{\partial^2u}{\partial\xi^2}+[10ab+12(a+b)+8]\cfrac{\partial^2u}{\partial x\partial y}+(5b^2+12b+4)\cfrac{\partial^2u}{\partial y^2}=0 (5a2+12a+4)ξ22u+[10ab+12(a+b)+8]xy2u+(5b2+12b+4)y22u=0
  由题设知 { 5 a 2 + 12 a + 4 = 0 , 5 b 2 + 12 b + 4 = 0 , \begin{cases}5a^2+12a+4=0,\\5b^2+12b+4=0,\end{cases} {5a2+12a+4=0,5b2+12b+4=0, 10 a b + 12 ( a + b ) + 8 ≠ 0 10ab+12(a+b)+8\ne0 10ab+12(a+b)+8=0,解得 { a = − 2 , b = − 2 5 , \begin{cases}a=-2,\\b=-\cfrac{2}{5},\end{cases} a=2,b=52, { a = − 2 5 , b = − 2. \begin{cases}a=-\cfrac{2}{5},\\b=-2.\end{cases} a=52,b=2.这道题主要利用了多元复合函数求导求解

例28  设 ( r , θ ) (r,\theta) (r,θ)为极坐标, u = u ( r , θ ) u=u(r,\theta) u=u(r,θ) r > 0 r>0 r>0时具有二阶连续偏导数,并满足 ∂ u ∂ θ ≡ 0 \cfrac{\partial u}{\partial\theta}\equiv0 θu0,且 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 \cfrac{\partial^2u}{\partial x^2}+\cfrac{\partial^2u}{\partial y^2}=0 x22u+y22u=0,求 u ( r , θ ) u(r,\theta) u(r,θ)

  由 ∂ u ∂ θ ≡ 0 \cfrac{\partial u}{\partial\theta}\equiv0 θu0知, u u u仅为 r r r的函数,令 u = φ ( r ) u=\varphi(r) u=φ(r),其中 r = x 2 + y 2 , r > 0 r=\sqrt{x^2+y^2},r>0 r=x2+y2 ,r>0。则
∂ u ∂ x = φ ′ ( r ) x x 2 + y 2 = φ ′ ( x ) x r , ∂ 2 u ∂ x 2 = φ ′ ′ ( x ) x 2 r 2 + φ ′ ( r ) r − x 2 r r 2 = φ ′ ′ ( r ) x 2 r 2 + φ ′ ( r ) ( 1 r − x 2 r 3 ) . \cfrac{\partial u}{\partial x}=\varphi'(r)\cfrac{x}{\sqrt{x^2+y^2}}=\varphi'(x)\cfrac{x}{r},\\ \cfrac{\partial^2u}{\partial x^2}=\varphi''(x)\cfrac{x^2}{r^2}+\varphi'(r)\cfrac{r-\cfrac{x^2}{r}}{r^2}=\varphi''(r)\cfrac{x^2}{r^2}+\varphi'(r)\left(\cfrac{1}{r}-\cfrac{x^2}{r^3}\right). xu=φ(r)x2+y2 x=φ(x)rx,x22u=φ(x)r2x2+φ(r)r2rrx2=φ(r)r2x2+φ(r)(r1r3x2).
  由对称性可得 ∂ 2 u ∂ y 2 = φ ′ ′ ( x ) y 2 r 2 + φ ′ ( r ) ( 1 r − y 2 r 3 ) \cfrac{\partial^2u}{\partial y^2}=\varphi''(x)\cfrac{y^2}{r^2}+\varphi'(r)\left(\cfrac{1}{r}-\cfrac{y^2}{r^3}\right) y22u=φ(x)r2y2+φ(r)(r1r3y2),则 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = φ ′ ′ ( x ) + φ ′ ( x ) 1 r \cfrac{\partial^2u}{\partial x^2}+\cfrac{\partial^2u}{\partial y^2}=\varphi''(x)+\varphi'(x)\cfrac{1}{r} x22u+y22u=φ(x)+φ(x)r1,从而得 φ ′ ′ ( x ) + φ ′ ( x ) 1 r = 0 \varphi''(x)+\varphi'(x)\cfrac{1}{r}=0 φ(x)+φ(x)r1=0
  这是一个不显含 φ ( r ) \varphi(r) φ(r)的可降阶方程,令 φ ′ ( x ) = p \varphi'(x)=p φ(x)=p,则 φ ′ ′ ( r ) = d p d r \varphi''(r)=\cfrac{\mathrm{d}p}{\mathrm{d}r} φ(r)=drdp。代入上式得 d p d r + p r = 0 ⇒ p = C 1 r \cfrac{\mathrm{d}p}{\mathrm{d}r}+\cfrac{p}{r}=0\Rightarrow p=\cfrac{C_1}{r} drdp+rp=0p=rC1,即 φ ′ ( r ) = C 1 r \varphi'(r)=\cfrac{C_1}{r} φ(r)=rC1,则 φ ( r ) = C 1 ln ⁡ r + C 2 \varphi(r)=C_1\ln r+C_2 φ(r)=C1lnr+C2,故 u = C 1 ln ⁡ r + C 2 u=C_1\ln r+C_2 u=C1lnr+C2。(这道题主要利用了微分方程求解

例29  若对任意 t > 0 t>0 t>0,有 f ( t x , t y ) = t n f ( x , y ) f(tx,ty)=t^nf(x,y) f(tx,ty)=tnf(x,y),则称函数 f ( x , y ) f(x,y) f(x,y) n n n次齐次函数。试证:若 f ( x , y ) f(x,y) f(x,y)可微,则 f ( x , y ) f(x,y) f(x,y) n n n次齐次函数的充要条件是 x ∂ f ∂ x + y ∂ f ∂ y = n f ( x , y ) x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}=nf(x,y) xxf+yyf=nf(x,y)

  必要性:由于 f ( x , y ) f(x,y) f(x,y) n n n次齐次方程,则对任意 t > 0 t>0 t>0,有 f ( t x , t y ) = t n f ( x , y ) f(tx,ty)=t^nf(x,y) f(tx,ty)=tnf(x,y)。该式两端对 t t t求导得 x f 1 ′ ( t x , t y ) + y f 2 ′ ( t x , t y ) = n t n − 1 f ( x , y ) xf'_1(tx,ty)+yf'_2(tx,ty)=nt^{n-1}f(x,y) xf1(tx,ty)+yf2(tx,ty)=ntn1f(x,y)。令 t = 1 t=1 t=1 x f 1 ′ ( t x , t y ) + y f 2 ′ ( t x , t y ) = n f ( x , y ) xf'_1(tx,ty)+yf'_2(tx,ty)=nf(x,y) xf1(tx,ty)+yf2(tx,ty)=nf(x,y),即有 x ∂ f ∂ x + y ∂ f ∂ y = n f ( x , y ) x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}=nf(x,y) xxf+yyf=nf(x,y)
  充分性:令 F ( t ) = f ( t x , t y ) ( t > 0 ) F(t)=f(tx,ty)(t>0) F(t)=f(tx,ty)(t>0),则 d F d t = x ∂ f ∂ x + y ∂ f ∂ y \cfrac{\mathrm{d}F}{\mathrm{d}t}=x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y} dtdF=xxf+yyf,两边乘以 t t t t d F d t = t x ∂ f ∂ x + t y ∂ f ∂ y = n f ( t x , t y ) = n F ( t ) t\cfrac{\mathrm{d}F}{\mathrm{d}t}=tx\cfrac{\partial f}{\partial x}+ty\cfrac{\partial f}{\partial y}=nf(tx,ty)=nF(t) tdtdF=txxf+tyyf=nf(tx,ty)=nF(t)。于是 d F F = n t d t \cfrac{\mathrm{d}F}{F}=\cfrac{n}{t}\mathrm{d}t FdF=tndt,解得 F ( t ) = C t n F(t)=Ct^n F(t)=Ctn。令 t = 1 t=1 t=1得, F ( 1 ) = C F(1)=C F(1)=C,而由 F ( t ) = f ( t x , t y ) F(t)=f(tx,ty) F(t)=f(tx,ty) F ( 1 , 1 ) = f ( x , y ) F(1,1)=f(x,y) F(1,1)=f(x,y),则 C = f ( x , y ) C=f(x,y) C=f(x,y)。于是 F ( t ) = t n f ( x , y ) F(t)=t^nf(x,y) F(t)=tnf(x,y),即 f ( t x , t y ) = t n f ( x , y ) f(tx,ty)=t^nf(x,y) f(tx,ty)=tnf(x,y)。(这道题主要利用了多元函数求导求解

例36  设 f ( x , y ) f(x,y) f(x,y)有二阶连续偏导数,且 f y ′ ≠ 0 f'_y\ne0 fy=0,证明:对任给的常数 C C C f ( x , y ) = C f(x,y)=C f(x,y)=C为一条直线的充要条件是 f 2 ′ 2 f 11 ′ ′ + 2 f 1 ′ f 2 ′ f 12 ′ ′ + f 1 ′ 2 f 22 ′ ′ = 0 f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}=0 f22f11+2f1f2f12+f12f22=0

  设 f ( x , y ) = C f(x,y)=C f(x,y)=C确定的隐函数为 y = y ( x ) y=y(x) y=y(x),等式 f ( x , y ) = C f(x,y)=C f(x,y)=C两端对 x x x求导得 f 1 ′ + f 2 ′ d y d x = 0 ⇒ d y d x = − f 1 ′ f 2 ′ f'_1+f'_2\cfrac{\mathrm{d}y}{\mathrm{d}x}=0\Rightarrow\cfrac{\mathrm{d}y}{\mathrm{d}x}=-\cfrac{f'_1}{f_2'} f1+f2dxdy=0dxdy=f2f1。从而有
d 2 y d x 2 = − d d x ( f 1 ′ f 2 ′ ) = − ( f 11 ′ ′ + f 12 ′ ′ d y d x ) f 2 ′ − ( f 21 ′ ′ + f 22 ′ ′ d y d x ) f 1 ′ f 2 ′ 2 = − f 2 ′ 2 f 11 ′ ′ + 2 f 1 ′ f 2 ′ f 12 ′ ′ + f 1 ′ 2 f 22 ′ ′ f 2 ′ 3 \begin{aligned} \cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}&=-\cfrac{\mathrm{d}}{\mathrm{d}x}\left(\cfrac{f'_1}{f_2'}\right)\\ &=-\cfrac{\left(f''_{11}+f''_{12}\cfrac{\mathrm{d}y}{\mathrm{d}x}\right)f'_2-\left(f''_{21}+f''_{22}\cfrac{\mathrm{d}y}{\mathrm{d}x}\right)f'_1}{f'^2_2}\\ &=-\cfrac{f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}}{f'^3_2} \end{aligned} dx2d2y=dxd(f2f1)=f22(f11+f12dxdy)f2(f21+f22dxdy)f1=f23f22f11+2f1f2f12+f12f22
  必要性:若 f ( x , y ) = C f(x,y)=C f(x,y)=C是一条直线,则由 f ( x , y ) = C f(x,y)=C f(x,y)=C所确定的函数 y = y ( x ) y=y(x) y=y(x)应为线性函数(即 y = a x + b y=ax+b y=ax+b),则 d 2 y d x 2 = 0 \cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}=0 dx2d2y=0,从而有 f 2 ′ 2 f 11 ′ ′ + 2 f 1 ′ f 2 ′ f 12 ′ ′ + f 1 ′ 2 f 22 ′ ′ = 0 f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}=0 f22f11+2f1f2f12+f12f22=0
  充分性:若 f 2 ′ 2 f 11 ′ ′ + 2 f 1 ′ f 2 ′ f 12 ′ ′ + f 1 ′ 2 f 22 ′ ′ = 0 f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}=0 f22f11+2f1f2f12+f12f22=0,则 d 2 y d x 2 = 0 \cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}=0 dx2d2y=0。从而有 y = a x + b y=ax+b y=ax+b,即 f ( x , y ) = C f(x,y)=C f(x,y)=C所确定的隐函数 y = y ( x ) y=y(x) y=y(x)为线性函数。故 f ( x , y ) = C f(x,y)=C f(x,y)=C表示直线。(这道题主要利用了直线函数特征求解

5.3  极值与最值

例49  求中心在坐标原点的椭圆 x 2 + 4 x y + 5 y 2 = 1 x^2+4xy+5y^2=1 x2+4xy+5y2=1的长半轴与短半轴。

  椭圆 x 2 + 4 x y + 5 y 2 = 1 x^2+4xy+5y^2=1 x2+4xy+5y2=1上点 ( x , y ) (x,y) (x,y)到原点 ( 0 , 0 ) (0,0) (0,0)距离平方 d 2 = f ( x , y ) = x 2 + y 2 d^2=f(x,y)=x^2+y^2 d2=f(x,y)=x2+y2。问题归结为求 f ( x , y ) = x 2 + y 2 f(x,y)=x^2+y^2 f(x,y)=x2+y2在条件 x 2 + 4 x y + 5 y 2 = 1 x^2+4xy+5y^2=1 x2+4xy+5y2=1下的最大值和最小值。
  令 F ( x , y , λ ) = x 2 + y 2 + λ ( x 2 + 4 x y + 5 y 2 − 1 ) F(x,y,\lambda)=x^2+y^2+\lambda(x^2+4xy+5y^2-1) F(x,y,λ)=x2+y2+λ(x2+4xy+5y21),则
{ F x ′ = 2 x + λ ( 2 x − 4 y ) = 0 , ( 1 ) F y ′ = 2 y + λ ( − 4 x + 10 y ) = 0 , ( 2 ) F λ ′ = x 2 + 4 x y + 5 y 2 − 1 , ( 3 ) \begin{cases} F_x'=2x+\lambda(2x-4y)=0,&\qquad(1)\\ F_y'=2y+\lambda(-4x+10y)=0,&\qquad(2)\\ F_\lambda'=x^2+4xy+5y^2-1,&\qquad(3) \end{cases} Fx=2x+λ(2x4y)=0,Fy=2y+λ(4x+10y)=0,Fλ=x2+4xy+5y21,(1)(2)(3)
   ( 1 ) (1) (1)式乘 x 2 \cfrac{x}{2} 2x ( 2 ) (2) (2)式乘 y 2 \cfrac{y}{2} 2y x 2 + y 2 + λ ( x 2 + 4 x y + 5 y 2 ) = 0 x^2+y^2+\lambda(x^2+4xy+5y^2)=0 x2+y2+λ(x2+4xy+5y2)=0。则 x 2 + y 2 + λ = 0 x^2+y^2+\lambda=0 x2+y2+λ=0,即 x 2 + y 2 = − λ x^2+y^2=-\lambda x2+y2=λ
  由 ( 1 ) (1) (1)式和 ( 2 ) (2) (2)式知 { ( 1 + λ ) x − 2 λ y = 0 , − 2 λ + ( 1 + 5 λ ) y = 0 , \begin{cases}(1+\lambda)x-2\lambda y=0,\\-2\lambda+(1+5\lambda)y=0,\end{cases} {(1+λ)x2λy=0,2λ+(1+5λ)y=0,这是一个关于 x , y x,y x,y的二元线性齐次方程组,由题意知它有非零解,则 ∣ 1 + λ − 2 λ − 2 λ 1 + 5 λ ∣ = 0 \begin{vmatrix}1+\lambda&-2\lambda\\-2\lambda&1+5\lambda\end{vmatrix}=0 1+λ2λ2λ1+5λ=0,即 λ 2 + 6 λ + 1 = 0 \lambda^2+6\lambda+1=0 λ2+6λ+1=0,得 λ = − 3 ± 2 2 \lambda=-3\pm2\sqrt{2} λ=3±22
  故长半轴 a = 3 + 2 2 = 1 + 2 a=\sqrt{3+2\sqrt{2}}=1+\sqrt{2} a=3+22 =1+2 ,短半轴 a = 3 − 2 2 = 1 − 2 a=\sqrt{3-2\sqrt{2}}=1-\sqrt{2} a=322 =12 。(这道题主要利用了椭圆几何特点求解

5.4  方向导数与梯度 多元微分在几何上的应用 泰勒定理

例53  函数 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 在点 ( 0 , 0 ) (0,0) (0,0)处(  )
( A ) (A) (A)不连续;
( B ) (B) (B)偏导数存在;
( C ) (C) (C)沿任一方向方向导数存在;
( D ) (D) (D)可微。

  由于 lim ⁡ x → 0 y → 0 x 2 + y 2 = 0 = z ( 0 , 0 ) \lim\limits_{x\to0 \atop y\to0}\sqrt{x^2+y^2}=0=z(0,0) y0x0limx2+y2 =0=z(0,0),则在 ( 0 , 0 ) (0,0) (0,0)连续,选项 ( A ) (A) (A)不正确。
  由于 ∂ z ∂ x ∣ ( 0 , 0 ) = d d x ( z ( x , 0 ) ) ∣ x = 0 = d d x ( ∣ x ∣ ) ∣ x = 0 \cfrac{\partial z}{\partial x}\biggm\vert_{(0,0)}=\cfrac{\mathrm{d}}{\mathrm{d}x}{(z(x,0))}\biggm\vert_{x=0}=\cfrac{\mathrm{d}}{\mathrm{d}x}{(|x|)}\biggm\vert_{x=0} xz(0,0)=dxd(z(x,0))x=0=dxd(x)x=0,而 ∣ x ∣ |x| x x = 0 x=0 x=0不可导,则 ∂ z ∂ x ∣ ( 0 , 0 ) \cfrac{\partial z}{\partial x}\biggm\vert_{(0,0)} xz(0,0)不存在。
  设 l l l为从原点引出的射线,其方向余弦为 cos ⁡ α , cos ⁡ β \cos\alpha,\cos\beta cosα,cosβ,则
∂ l ∂ x ∣ ( 0 , 0 ) = lim ⁡ t → 0 + f ( t cos ⁡ α , t cos ⁡ β ) − f ( 0 , 0 ) t = lim ⁡ t → 0 + t 2 cos ⁡ 2 α + t 2 cos ⁡ 2 β − 0 t = 1. \begin{aligned} \cfrac{\partial l}{\partial x}\biggm\vert_{(0,0)}&=\lim\limits_{t\to0^+}\cfrac{f(t\cos\alpha,t\cos\beta)-f(0,0)}{t}\\ &=\lim\limits_{t\to0^+}\cfrac{\sqrt{t^2\cos^2\alpha+t^2\cos^2\beta}-0}{t}=1. \end{aligned} xl(0,0)=t0+limtf(tcosα,tcosβ)f(0,0)=t0+limtt2cos2α+t2cos2β 0=1.
  这说明函数 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 在点 ( 0 , 0 ) (0,0) (0,0)沿任一方向的方向导数都存在且为1,故应选 ( C ) (C) (C)。(这道题主要利用了方向导数的定义求解

例57  设 f ( x , y ) f(x,y) f(x,y) R 2 \bold{R}^2 R2(全平面)上的一个可微函数,且 lim ⁡ ρ → + ∞ ( x ∂ f ∂ x + y ∂ f ∂ y ) = α > 0 \lim\limits_{\rho\to+\infty}\left(x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}\right)=\alpha>0 ρ+lim(xxf+yyf)=α>0,其中 ρ = x 2 + y 2 \rho=\sqrt{x^2+y^2} ρ=x2+y2 α \alpha α为常数。试证明 f ( x , y ) f(x,y) f(x,y) R 2 \bold{R}^2 R2上有最小值。

  因为 lim ⁡ ρ → + ∞ ( x ∂ f ∂ x + y ∂ f ∂ y ) = α > 0 \lim\limits_{\rho\to+\infty}\left(x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}\right)=\alpha>0 ρ+lim(xxf+yyf)=α>0,由极限保号性知,存在 R > 0 R>0 R>0,当 ρ ⩾ R \rho\geqslant R ρR时(即 x 2 + y 2 ⩾ R 2 x^2+y^2\geqslant R^2 x2+y2R2时) x ∂ f ∂ x + y ∂ f ∂ y > 0 x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}>0 xxf+yyf>0。从而有 x ρ ∂ f ∂ x + y ρ ∂ f ∂ y > 0 \cfrac{x}{\rho}\cfrac{\partial f}{\partial x}+\cfrac{y}{\rho}\cfrac{\partial f}{\partial y}>0 ρxxf+ρyyf>0。若 r \bm{r} r用表示点 ( x , y ) (x,y) (x,y)处极径方向的方向导数,由 ( 1 ) (1) (1)式知 ∂ f ∂ r > 0 \cfrac{\partial f}{\partial r}>0 rf>0,则 f ( x , y ) f(x,y) f(x,y)在区域 x 2 + y 2 ⩾ R 2 x^2+y^2\geqslant R^2 x2+y2R2上任一点沿极径方向为增函数,由 f ( x , y ) f(x,y) f(x,y)可微性知, f ( x , y ) f(x,y) f(x,y)连续,则 f ( x , y ) f(x,y) f(x,y)在有界闭域 x 2 + y 2 ⩾ R 2 x^2+y^2\geqslant R^2 x2+y2R2上有最小值,由于 f ( x , y ) f(x,y) f(x,y) x 2 + y 2 ⩾ R 2 x^2+y^2\geqslant R^2 x2+y2R2上任一点沿极径方向为增函数,则 f ( x , y ) f(x,y) f(x,y) x 2 + y 2 ⩾ R 2 x^2+y^2\geqslant R^2 x2+y2R2上的最小值也是在全平面上的最小值。(这道题主要利用了极限的保号性求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

你可能感兴趣的:(考研数学一高等数学刷题错题记录,#,考研数学一高等数学复习全书)