目标追踪中解决cv2.selectROI不能实时框选的问题

在做目标追踪过程中,有时间我们需要对视频流中的某一帧进行ROI的选择,这时间就要利用到cv2.selectROI,但是在框选过程中,背景图片并不会实时变化,这点目前还没有找到用opencv内置函数解决的方案,就自己写了一段鼠标监控的程序,可以供大家参考,以下就是opencv实现摄像头捕捉视频并进行实时追踪的例子。

import os
import glob
import cv2

cap = cv2.VideoCapture(0)
ret,img = cap.read()
print(img.shape)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter("out.avi",fourcc, 24, (img.shape[1],img.shape[0]))
if not cap.isOpened():
    print("Could not open video");exit(-1)
tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN','MOSSE']
tracker_type=tracker_types[2]
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
if int(minor_ver) < 3:
    tracker1 = cv2.Tracker_create(tracker_type)
else:
    if tracker_type == 'BOOSTING':
        tracker1 = cv2.TrackerBoosting_create()
    if tracker_type == 'MIL':
        tracker1 = cv2.TrackerMIL_create()
    if tracker_type == 'KCF':
        tracker1 = cv2.TrackerKCF_create()
    if tracker_type == 'TLD':
        tracker1 = cv2.TrackerTLD_create()
    if tracker_type == 'MEDIANFLOW':
        tracker1 = cv2.TrackerMedianFlow_create()
    if tracker_type == 'GOTURN':
        tracker1 = cv2.TrackerGOTURN_create()
    if tracker_type == 'MOSSE':
        tracker1 = cv2.TrackerGOTURN_create()

selection = None
track_window = None
drag_start = None

# 鼠标选框(做目标跟踪框)
def onmouse(event, x, y, flags, param):
    global selection,track_window,drag_start
    if event == cv2.EVENT_LBUTTONDOWN:
        drag_start = (x, y)
        track_window = None
    if drag_start:
        xmin = min(x, drag_start[0])
        ymin = min(y, drag_start[1])
        xmax = max(x, drag_start[0])
        ymax = max(y, drag_start[1])
        selection = (xmin, ymin, xmax, ymax)
    if event == cv2.EVENT_LBUTTONUP:
        drag_start = None
        track_window = selection
        selection = None

def main():
    track_window1 = ()
    cv2.namedWindow('image',1)
    cv2.setMouseCallback('image',onmouse)
    # We will track the frames as we load them off of disk
    # for k, f in enumerate(sorted(glob.glob(os.path.join(video_folder, "*.jpg")))):
    k=0
    while(1):
        ret, frame = cap.read()
        if not ret:
            print("Game over!")
            break
        print("Processing Frame {}".format(k))
        img_raw =frame #cv2.imread(f)
        image = img_raw.copy()

        # We need to initialize the tracker on the first frame
        if k == 0:
            # Start a track on the object you want. box the object using the mouse and press 'Enter' to start tracking
            while True:
                ret, image = cap.read()
                img_first = image.copy()
                if track_window:
                    cv2.rectangle(img_first,(track_window[0],track_window[1]),(track_window[2],track_window[3]),(0,0,255),1)
                elif selection:
                    cv2.rectangle(img_first,(selection[0],selection[1]),(selection[2],selection[3]),(0,0,255),1)
                if track_window1:
                    cv2.rectangle(img_first, (track_window1[0], track_window1[1]), (track_window1[2], track_window1[3]),
                                  (0, 255, 255), 1)

                cv2.imshow('image', img_first)
                if cv2.waitKey(10) == 32: # space
                    track_window1=list(track_window)
                    track_window1[2]=track_window1[2]-track_window1[0]
                    track_window1[3]=track_window1[3]-track_window1[1]
                    track_window1=tuple(track_window1)
                    k=2
                    tracker1.init(image,track_window1)
                    break


        else:
            # Else we just attempt to track from the previous frame
            status,box1_predict=tracker1.update(image)

            # Get previous box and draw on showing image
            cv2.rectangle(image, (int(box1_predict[0]), int(box1_predict[1])),
                          (int(box1_predict[0]+box1_predict[2]), int(box1_predict[1]+box1_predict[3])), (0, 255, 255), 3)
            cv2.putText(image, tracker_type, (150, 20), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 255), 2)
            #cv2.putText(image, "standard", (5, 20), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2)
            cv2.imshow('image', image)
            out.write(image)
            # cv2.waitKey(10)
            c = cv2.waitKey(10) & 0xff
            if c == 27: break # ESC
            k+=1
    cv2.destroyAllWindows()

if __name__ == '__main__':
    main()

 

你可能感兴趣的:(opencv,ROI选择,目标追踪)