本节介绍串口1的应用程序开发,MT7688AN开发板的串口0作为中断接口使用,uart1可以供用户使用
系统中串口驱动已经开发好可以直接供应用程序使用,应用程序如下:uart2_mt7688.c
#include
#include
#include
#include
#include
#include
#include
#include
#include
//宏定义
#define FALSE -1
#define TRUE 0
/*******************************************************************
* 名称: UART0_Open
* 功能: 打开串口并返回串口设备文件描述
* 入口参数: fd :文件描述符 port :串口号(ttyS0,ttyS1,ttyS2)
* 出口参数: 正确返回为1,错误返回为0
*******************************************************************/
int UART0_Open(int fd,char* port)
{
fd = open( port, O_RDWR|O_NOCTTY|O_NDELAY);
if (FALSE == fd)
{
perror("Can't Open Serial Port");
return(FALSE);
}
//恢复串口为阻塞状态
if(fcntl(fd, F_SETFL, 0) < 0)
{
printf("fcntl failed!\n");
return(FALSE);
} else {
printf("fcntl=%d\n",fcntl(fd, F_SETFL,0));
}
//测试是否为终端设备
if(0 == isatty(STDIN_FILENO))
{
printf("standard input is not a terminal device\n");
return(FALSE);
}else {
printf("isatty success!\n");
}
printf("fd->open=%d\n",fd);
return fd;
}
/*******************************************************************
* 名称: UART0_Close
* 功能: 关闭串口并返回串口设备文件描述
* 入口参数: fd :文件描述符 port :串口号(ttyS0,ttyS1,ttyS2)
* 出口参数: void
*******************************************************************/
void UART0_Close(int fd)
{
close(fd);
}
/*******************************************************************
* 名称: UART0_Set
* 功能: 设置串口数据位,停止位和效验位
* 入口参数: fd 串口文件描述符
* speed 串口速度
* flow_ctrl 数据流控制
* databits 数据位 取值为 7 或者8
* stopbits 停止位 取值为 1 或者2
* parity 效验类型 取值为N,E,O,,S
*出口参数: 正确返回为1,错误返回为0
*******************************************************************/
int UART0_Set(int fd,int speed,int flow_ctrl,int databits,int stopbits,int parity)
{
int i;
int status;
int speed_arr[] = { B115200, B19200, B9600, B4800, B2400, B1200, B300};
int name_arr[] = {115200, 19200, 9600, 4800, 2400, 1200, 300};
struct termios options;
/*tcgetattr(fd,&options)得到与fd指向对象的相关参数,并将它们保存于options,该函数还可以测试配置是否正确,该串口是否可用等。若调用成功,函数返回值为0,若调用失败,函数返回值为1.
*/
if( tcgetattr( fd,&options) != 0)
{
perror("SetupSerial 1");
return(FALSE);
}
//设置串口输入波特率和输出波特率
for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++)
{
if (speed == name_arr[i])
{
cfsetispeed(&options, speed_arr[i]);
cfsetospeed(&options, speed_arr[i]);
}
}
//修改控制模式,保证程序不会占用串口
options.c_cflag |= CLOCAL;
//修改控制模式,使得能够从串口中读取输入数据
options.c_cflag |= CREAD;
//设置数据流控制
switch(flow_ctrl)
{
case 0 ://不使用流控制
options.c_cflag &= ~CRTSCTS;
break;
case 1 ://使用硬件流控制
options.c_cflag |= CRTSCTS;
break;
case 2 ://使用软件流控制
options.c_cflag |= IXON | IXOFF | IXANY;
break;
}
//设置数据位
//屏蔽其他标志位
options.c_cflag &= ~CSIZE;
switch (databits)
{
case 5 :
options.c_cflag |= CS5;
break;
case 6 :
options.c_cflag |= CS6;
break;
case 7 :
options.c_cflag |= CS7;
break;
case 8:
options.c_cflag |= CS8;
break;
default:
fprintf(stderr,"Unsupported data size\n");
return (FALSE);
}
//设置校验位
switch (parity)
{
case 'n':
case 'N': //无奇偶校验位。
options.c_cflag &= ~PARENB;
options.c_iflag &= ~INPCK;
break;
case 'o':
case 'O'://设置为奇校验
options.c_cflag |= (PARODD | PARENB);
options.c_iflag |= INPCK;
break;
case 'e':
case 'E'://设置为偶校验
options.c_cflag |= PARENB;
options.c_cflag &= ~PARODD;
options.c_iflag |= INPCK;
break;
case 's':
case 'S': //设置为空格
options.c_cflag &= ~PARENB;
options.c_cflag &= ~CSTOPB;
break;
default:
fprintf(stderr,"Unsupported parity\n");
return (FALSE);
}
// 设置停止位
switch (stopbits)
{
case 1:
options.c_cflag &= ~CSTOPB; break;
case 2:
options.c_cflag |= CSTOPB; break;
default:
fprintf(stderr,"Unsupported stop bits\n");
return (FALSE);
}
//修改输出模式,原始数据输出
options.c_oflag &= ~OPOST;
options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
//options.c_lflag &= ~(ISIG | ICANON);
//设置等待时间和最小接收字符
options.c_cc[VTIME] = 1; /* 读取一个字符等待1*(1/10)s */
options.c_cc[VMIN] = 1; /* 读取字符的最少个数为1 */
//如果发生数据溢出,接收数据,但是不再读取 刷新收到的数据但是不读
tcflush(fd,TCIFLUSH);
//激活配置 (将修改后的termios数据设置到串口中)
if (tcsetattr(fd,TCSANOW,&options) != 0)
{
perror("com set error!\n");
return (FALSE);
}
return (TRUE);
}
/*******************************************************************
* 名称: UART0_Init()
* 功能: 串口初始化
* 入口参数: fd : 文件描述符
* speed : 串口速度
* flow_ctrl 数据流控制
* databits 数据位 取值为 7 或者8
* stopbits 停止位 取值为 1 或者2
* parity 效验类型 取值为N,E,O,,S
*
* 出口参数: 正确返回为1,错误返回为0
*******************************************************************/
int UART0_Init(int fd, int speed,int flow_ctrl,int databits,int stopbits,int parity)
{
int err;
//设置串口数据帧格式
if (UART0_Set(fd,9600,0,8,1,'N') == FALSE)
{
return FALSE;
}else{
return TRUE;
}
}
/*******************************************************************
* 名称: UART0_Recv
* 功能: 接收串口数据
* 入口参数: fd :文件描述符
* rcv_buf :接收串口中数据存入rcv_buf缓冲区中
* data_len :一帧数据的长度
* 出口参数: 正确返回为1,错误返回为0
*******************************************************************/
int UART0_Recv(int fd, char *rcv_buf,int data_len)
{
int len,fs_sel;
fd_set fs_read;
struct timeval time;
FD_ZERO(&fs_read);
FD_SET(fd,&fs_read);
time.tv_sec = 10;
time.tv_usec = 0;
//使用select实现串口的多路通信
fs_sel = select(fd+1,&fs_read,NULL,NULL,&time);
printf("fs_sel = %d\n",fs_sel);
if(fs_sel)
{
len = read(fd,rcv_buf,data_len);
printf("I am right!(version1.2) len = %d fs_sel = %d\n",len,fs_sel);
return len;
}else{
printf("Sorry,I am wrong!");
return FALSE;
}
}
/********************************************************************
* 名称: UART0_Send
* 功能: 发送数据
* 入口参数: fd :文件描述符
* send_buf :存放串口发送数据
* data_len :一帧数据的个数
* 出口参数: 正确返回为1,错误返回为0
*******************************************************************/
int UART0_Send(int fd, char *send_buf,int data_len)
{
int len = 0;
len = write(fd,send_buf,data_len);
if (len == data_len )
{
printf("send data is %s\n",send_buf);
return len;
} else{
tcflush(fd,TCOFLUSH);
return FALSE;
}
}
//main
int main(void)
{
int fd; //文件描述符
int err; //返回调用函数的状态
int len;
int i;
char rcv_buf[1000];
char send_buf[20]="orisunli,hello";
fd = UART0_Open(fd,"/dev/ttyS1"); //打开串口,返回文件描述符
do{
err = UART0_Init(fd,19200,0,8,1,'N');
printf("Set Port Exactly!\n");
}while(FALSE == err || FALSE == fd);
while (1) //循环读取数据
{
len = UART0_Recv(fd, rcv_buf,1000);
if(len > 0)
{
rcv_buf[len] = '\0';
printf("receive data is %s\n",rcv_buf);
printf("len = %d\n",len);
len = UART0_Send(fd,rcv_buf,len);
if(len > 0)
printf("send %d data successful\n",len);
else
printf("send data failed!\n");
}else{
printf("cannot receive data\n");
}
//sleep(1);
}
UART0_Close(fd);
}
应用程序的功能是把收到的数据发送出来
makefile如下:
KERNELDIR ?=/home/wooya/work/openwrt-hiwooya-stable/build_dir/target-mipsel_24kec+dsp_uClibc-0.9.33.2/linux-ramips_mt7688/linux-3.18.45
all: uart2_mt7688
uart2_mt7688 : uart2_mt7688.c
#mipsel-openwrt-linux-gcc -I$(KERNELDIR) -s -Wl,-warn-common --static -o $@ $^
mipsel-openwrt-linux-gcc -I$(KERNELDIR) -o $@ $^
clean :
rm uart2_mt7688
make 后生成可执行文件uart2_mt7688
修改uart2_mt7688权限chmod +x uart2_mt7688 ,使其可执行
运行uart2_mt7688,如下,同时串口发送数据,开发板接收到数据后在发送出来
把uart2_mt7688可执行文件设置为开机自动运行,如下
之前在开机启动文件里添加过一个脚本文件开机运行,把uart2_mt7688添加到那个文件里,如下:
在/etc/init.d/文件夹下的orisunli 脚本文件中添加 ./uart2_mt7688 即可,保存退出
此时reboot开发板,开发板启动完成后uart2_mt7688程序也开始运行了
用ps查看当前运行的进程:1120 即为运行的进程ID
打开电脑端的串口自动发送数据,开发板把收到的数据发送给电脑,如下
ok了