设:
m,n∈N,m,n≥1,
x=(x1,⋯,xn)⊺,
f(x)=(f1(x),⋯,fm(x))⊺,
f′(x)=Jf(x)=A=(aij(x))m×n=(a1,⋯,an)⊺,
Δx=(Δx1,⋯,Δxn)⊺,
Δy=f(x+Δx)−f(x)=(Δy1,⋯,Δym)⊺,
r=∑nj=1Δxj2−−−−−−−−−√
则:
∀i∈N,1≤i≤m,dyi=∑nj=1aijdxj,
⇔dy=df(x)=Adx=∑nj=1ajdxj
注:
记 ∂y∂x=A, 则等式可写为:
dy=∂y∂xdx
∀i∈N,1≤i≤m,dyi=∑nj=1aijdxj,
⇔∀i∈N,1≤i≤m,Δyi=∑nj=1aijΔxj+r⋅αi(x,Δx),
其中 limx→0αi(x,Δx)=0,
⇔Δy=AΔx+r⋅α(x,Δx),
其中 α(x,Δx)=(α1(x,Δx),⋯,αm(x,Δx))⊺,1≤i≤m,
limx→0α=0
(易知: ∀i∈N,1≤i≤m,limx→0αi=0⇔limx→0α=0 )
⇔dy=df(x)=Adx=∑nj=1ajdxj