§1.The Autocorrelation Function for AR(1) Process
Consider the AR(1) process:
y t = a 0 + a 1 y t − 1 + ε t y_t=a_0+a_1y_{t-1}+\varepsilon_t yt=a0+a1yt−1+εt
where ε t {ε_t} εt is a white noise process. And suppose the process starts at period 0 with value y 0 y_0 y0.
if ∣ a 1 ∣ < 1 |a_1|<1 ∣a1∣<1,as t → ∞ t\to\infty t→∞,we have:
lim t → ∞ y t = a 0 1 − a 1 + ∑ i = 0 ∞ a 1 i ε t − i \lim_{t\to\infty}y_t=\frac{a_0}{1-a_1}+\sum_{i=0}^{\infty}a_1^i\varepsilon_{t-i} t→∞limyt=1−a1a0+i=0∑∞a1iεt−i
we have for sufficiently large enough t,
E ( y t ) = a 0 1 − a 1 ≡ μ E(y_t)=\frac{a_0}{1-a_1}\equiv \mu E(yt)=1−a1a0≡μ
E ( y t − μ ) 2 = E [ ( ε t + a 1 ε t − 1 + a 1 2 ε t − 2 + ⋯ ) 2 ] = E ( ε t 2 + a 1 2 ε t − 1 2 + a 1 4 ε t − 2 2 + ⋯ ) = σ 2 + a 1 2 σ 2 + a 1 4 σ 2 + ⋯ = σ 2 ( 1 + a 1 2 + a 1 4 + ⋯ ) = σ 2 ⋅ 1 1 − a 1 2 \begin{array}{lcl} E(y_t-\mu)^2=E[(\varepsilon_t+a_1\varepsilon_{t-1}+a_1^2\varepsilon_{t-2}+\cdots)^2]\\=E(\varepsilon_t^2+a_1^2\varepsilon_{t-1}^2+a_1^4\varepsilon_{t-2}^2+\cdots)\\=\sigma^2+a_1^2\sigma^2+a_1^4\sigma^2+\cdots=\sigma^2(1+a_1^2+a_1^4+\cdots)\\=\sigma^2\cdot\frac{1}{1-a_1^2} \end{array} E(yt−μ)2=E[(εt+a1εt−1+a12εt−2+⋯)2]=E(εt2+a12εt−12+a14εt−22+⋯)=σ2+a12σ2+a14σ2+⋯=σ2(1+a12+a14+⋯)=σ2⋅1−a121
E [ ( y t − μ ) ( y t − s − μ ) ] = E [ ( ε t + a 1 ε t − 1 + ⋯ a 1 s ε t − s + a 1 s + 1 ε t − s − 1 + ⋯ ) ( ε t − s + a 1 ε t − s − 1 + ⋯ ) ] = a 1 s σ 2 + a 1 s + 2 σ 2 + a 1 s + 4 σ 2 + ⋯ = σ 2 ( a 1 s ) ( 1 + a 1 2 + a 1 4 + ⋯ ) = σ 2 ( a 1 s ) ⋅ 1 1 − a 1 2 \begin{array}{lcl} E[(y_t-\mu)(y_{t-s}-\mu)]\\=E[(\varepsilon_t+a_1\varepsilon_{t-1}+\cdots a_1^s\varepsilon_{t-s}+a_1^{s+1}\varepsilon_{t-s-1}+\cdots)(\varepsilon_{t-s}+a_1\varepsilon_{t-s-1}+\cdots)]\\=a_1^s\sigma^2+a_1^{s+2}\sigma^2+a_1^{s+4}\sigma^2+ \cdots\\=\sigma^2(a_1^s)(1+a_1^2+a_1^4+\cdots)\\=\sigma^2(a_1^s)\cdot\frac{1}{1-a_1^2} \end{array} E[(yt−μ)(yt−s−μ)]=E[(εt+a1εt−1+⋯a1sεt−s+a1s+1εt−s−1+⋯)(εt−s+a1εt−s−1+⋯)]=a1sσ2+a1s+2σ2+a1s+4σ2+⋯=σ2(a1s)(1+a12+a14+⋯)=σ2(a1s)⋅1−a121
then we have:
γ 0 = σ 2 / ( 1 − a 1 2 ) γ 1 = σ 2 ( a 1 s ) / ( 1 − a 1 2 ) \begin{array}{lcl} \gamma_0=\sigma^2/(1-a_1^2)\\ \gamma_1=\sigma^2(a_1^s)/(1-a_1^2) \end{array} γ0=σ2/(1−a12)γ1=σ2(a1s)/(1−a12)
And forming the autocorrelations by dividing each γ s γ_s γs by γ 0 γ_0 γ0, we find that:
ρ 0 = 1 ρ s = a 1 s \begin{array}{lcl} \rho_0=1\\ \rho_s=a_1^s \end{array} ρ0=1ρs=a1s
{ 0 < a 1 < 1 时 , 自 相 关 系 数 直 接 收 敛 到 0 − 1 < a 1 < 0 时 , 自 相 关 系 数 震 荡 收 敛 到 0 \begin{cases} 0
§2.The Autocorrelation Function for AR(2) Process
Consider the AR(2) model:
y t = a 1 y t − 1 + a 2 y t − 2 + ε t y_t=a_1y_{t-1}+a_2y_{t-2}+\varepsilon_t yt=a1yt−1+a2yt−2+εt
If the roots of 1 − a 1 L − a 2 L 2 = 0 1 - a_1L -a_2L^2 = 0 1−a1L−a2L2=0 are outside the unit circle, the process is stationary.
thus,we have:
E ( y t ) = μ E ( y t ) = a 1 E ( y t − 1 ) + a 2 E ( y t − 2 ) + E ( ε t ) ⇒ μ = a 1 μ + a 2 μ + 0 ⇒ μ = 0 \begin{array}{lcl} E(y_t)=\mu\\ E(y_t)=a_1E(y_{t-1})+a_2E(y_{t-2})+E(\varepsilon_t)\\ \Rightarrow \mu=a_1\mu+a_2\mu+0\\ \Rightarrow \mu=0 \end{array} E(yt)=μE(yt)=a1E(yt−1)+a2E(yt−2)+E(εt)⇒μ=a1μ+a2μ+0⇒μ=0
Now we apply the technique of Yule-Walker equations. Multiply the equation by y t − s f o r s = 0 , 1 , 2 , . . . y_{t-s} for\,\, s = 0, 1, 2, . . . yt−sfors=0,1,2,... and take expectation:
E y t y t = a 1 E y t − 1 y t + a 2 E y t − 2 y t + E ε t y t Ey_ty_t=a_1Ey_{t-1}y_t+a_2Ey_{t-2}y_t+E\varepsilon_ty_t Eytyt=a1Eyt−1yt+a2Eyt−2yt+Eεtyt
E y t y t − 1 = a 1 E y t − 1 y t − 1 + a 2 E y t − 2 y t − 1 + E ε t y t − 1 Ey_ty_{t-1}=a_1Ey_{t-1}y_{t-1}+a_2Ey_{t-2}y_{t-1}+E\varepsilon_ty_{t-1} Eytyt−1=a1Eyt−1yt−1+a2Eyt−2yt−1+Eεtyt−1
E y t y t − s = a 1 E y t − 1 y t − s + a 2 E y t − 2 y t − s + E ε t y t − s Ey_ty_{t-s}=a_1Ey_{t-1}y_{t-s}+a_2Ey_{t-2}y_{t-s}+E\varepsilon_ty_{t-s} Eytyt−s=a1Eyt−1yt−s+a2Eyt−2yt−s+Eεtyt−s
From the above equations, we have:
γ 0 = a 1 γ 1 + a 2 γ 2 + σ 2 \gamma_0=a_1\gamma_1+a_2\gamma_2+\sigma^2 γ0=a1γ1+a2γ2+σ2
γ 1 = a 1 γ 0 + a 2 γ 1 + 0 \gamma_1=a_1\gamma_0+a_2\gamma_1+0 γ1=a1γ0+a2γ1+0
γ s = a 1 γ s − 1 + a 2 γ s − 2 + 0 \gamma_s=a_1\gamma_{s-1}+a_2\gamma_{s-2}+0 γs=a1γs−1+a2γs−2+0
So that,
ρ 1 = a 1 ρ 0 + a 2 ρ 1 ρ s = a 1 ρ s − 1 + a 2 ρ s − 2 \rho_1=a_1\rho_0+a_2\rho_1\\ \rho_s=a_1\rho_{s-1}+a_2\rho_{s-2} ρ1=a1ρ0+a2ρ1ρs=a1ρs−1+a2ρs−2
By ρ 0 = 1 ρ_0 = 1 ρ0=1, we derive that ρ 1 = a 1 / ( 1 − a 2 ) ρ_1 = a_1/(1-a_2) ρ1=a1/(1−a2) and then derive ρ s ρ_s ρs for all s ≥ 2 s ≥ 2 s≥2.
注意到, ρ s = a 1 ρ s − 1 + a 2 ρ s − 2 \rho_s=a_1\rho_{s-1}+a_2\rho_{s-2} ρs=a1ρs−1+a2ρs−2的特征方程与AR(2) model一致,均为 1 − a 1 L − a 2 L 2 = 0 1 - a_1L -a_2L^2 = 0 1−a1L−a2L2=0,因此方程 ρ s = a 1 ρ s − 1 + a 2 ρ s − 2 \rho_s=a_1\rho_{s-1}+a_2\rho_{s-2} ρs=a1ρs−1+a2ρs−2也是平稳的,并且其收敛形式取决于 a 1 , a 2 a_1,a_2 a1,a2。