TensorFlow serving 安装教程与使用(2)

1. TF serving模型部署

(1)模型导出(生成符合Server要求的模型文件,主要是用builder加一下signature_def的key和method_name

自带的mnist模型导出代码在serving/tensorflow_serving/example/mnist_saved_model.py(如下),

# mnist_saved_model.py
import os
import sys

# This is a placeholder for a Google-internal import.

import tensorflow as tf

import mnist_input_data

os.environ["CUDA_VISIBLE_DEVICES"] = "0"

tf.app.flags.DEFINE_integer('training_iteration', 1000,
                            'number of training iterations.')
tf.app.flags.DEFINE_integer('model_version', 1, 'version number of the model.')
tf.app.flags.DEFINE_string('work_dir', '/tmp', 'Working directory.')
FLAGS = tf.app.flags.FLAGS


def main(_):
  if len(sys.argv) < 2 or sys.argv[-1].startswith('-'):
    print('Usage: mnist_export.py [--training_iteration=x] '
          '[--model_version=y] export_dir')
    sys.exit(-1)
  if FLAGS.training_iteration <= 0:
    print 'Please specify a positive value for training iteration.'
    sys.exit(-1)
  if FLAGS.model_version <= 0:
    print 'Please specify a positive value for version number.'
    sys.exit(-1)

  # Train model
  print 'Training model...'
  mnist = mnist_input_data.read_data_sets(FLAGS.work_dir, one_hot=True)
  sess = tf.InteractiveSession()
  serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
  feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32),}
  tf_example = tf.parse_example(serialized_tf_example, feature_configs)
  x = tf.identity(tf_example['x'], name='x')  # use tf.identity() to assign name
  y_ = tf.placeholder('float', shape=[None, 10])
  w = tf.Variable(tf.zeros([784, 10]))
  b = tf.Variable(tf.zeros([10]))
  sess.run(tf.global_variables_initializer())
  y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
  cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
  train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
  values, indices = tf.nn.top_k(y, 10)
  table = tf.contrib.lookup.index_to_string_table_from_tensor(
      tf.constant([str(i) for i in xrange(10)]))
  prediction_classes = table.lookup(tf.to_int64(indices))
  for _ in range(FLAGS.training_iteration):
    batch = mnist.train.next_batch(50)
    train_step.run(feed_dict={x: batch[0], y_: batch[1]})
  correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
  accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
  print 'training accuracy %g' % sess.run(
      accuracy, feed_dict={x: mnist.test.images,
                           y_: mnist.test.labels})
  print 'Done training!'

  # Export model
  # WARNING(break-tutorial-inline-code): The following code snippet is
  # in-lined in tutorials, please update tutorial documents accordingly
  # whenever code changes.
  export_path_base = sys.argv[-1]
  export_path = os.path.join(
      tf.compat.as_bytes(export_path_base),
      tf.compat.as_bytes(str(FLAGS.model_version)))
  print 'Exporting trained model to', export_path
  builder = tf.saved_model.builder.SavedModelBuilder(export_path)

  # Build the signature_def_map.
  classification_inputs = tf.saved_model.utils.build_tensor_info(
      serialized_tf_example)
  classification_outputs_classes = tf.saved_model.utils.build_tensor_info(
      prediction_classes)
  classification_outputs_scores = tf.saved_model.utils.build_tensor_info(values)

  classification_signature = (
      tf.saved_model.signature_def_utils.build_signature_def(
          inputs={
              tf.saved_model.signature_constants.CLASSIFY_INPUTS:
                  classification_inputs
          },
          outputs={
              tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES:
                  classification_outputs_classes,
              tf.saved_model.signature_constants.CLASSIFY_OUTPUT_SCORES:
                  classification_outputs_scores
          },
          method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME))

  tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
  tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

  prediction_signature = (
      tf.saved_model.signature_def_utils.build_signature_def(
          inputs={'images': tensor_info_x},
          outputs={'scores': tensor_info_y},
          # method_name(必要)
          method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

  legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
  builder.add_meta_graph_and_variables(
      sess, [tf.saved_model.tag_constants.SERVING],
      # signature_def(必要)
      signature_def_map={
          'predict_images':
              prediction_signature,
          tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
              classification_signature,
      },
      legacy_init_op=legacy_init_op)

  builder.save()

  print 'Done exporting!'


if __name__ == '__main__':
  tf.app.run()

之后执行命令:

# 确保没有该目录(也可自定义目录)
rm -rf /tmp/mnist_model

# 编译mnist_saved_model.py,其中mnist_saved_model是在同目录下的BUILD文件中进行配置的名称,打开BUILD看一下就明白了
bazel build //tensorflow_serving/example:mnist_saved_model

# 运行mnist_saved_model.py,加上路径,或者在代码中写入
bazel-bin/tensorflow_serving/example/mnist_saved_model /tmp/mnist_model

# 查看导出的tf-serving模型,在该目录下的‘1’文件夹下,‘1’表示模型版本,如果加入‘2’,启动模型服务,tf-serving会自动选择高版本的模型加载
ls /tmp/mnist_model

如果是自己已经训练好的模型,直接将模型文件方法指定目录下(如:/tmp/mnist_model/1/),并确保signature_def属性都有。

(2)启动服务,加载模型

# 首先build一下tf-serving的服务
bazel build //tensorflow_serving/model_servers:tensorflow_model_server

# 启动tf-serving,输入加载的模型路径和端口,模型名称(随意命名)
bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server --port=9000 --model_name=mnist --model_base_path=/tmp/mnist_model/

(3)服务激动成功后,再写客户端

自带的mnist代码在serving/tensorflow_serving/example/mnist_client.py(如下),主要写对ip端口,以及

request.model_spec.name = 'mnist'    (对应server模型的model_name)

request.model_spec.signature_name = 'predict_images'    (对应server模型的signature_name)

# mnist_client.py
from __future__ import print_function

import sys
import threading

# This is a placeholder for a Google-internal import.

from grpc.beta import implementations
import numpy
import tensorflow as tf

from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2
import mnist_input_data


tf.app.flags.DEFINE_integer('concurrency', 1,
                            'maximum number of concurrent inference requests')
tf.app.flags.DEFINE_integer('num_tests', 100, 'Number of test images')
tf.app.flags.DEFINE_string('server', '', 'PredictionService host:port')
tf.app.flags.DEFINE_string('work_dir', '/tmp', 'Working directory. ')
FLAGS = tf.app.flags.FLAGS


class _ResultCounter(object):
  """Counter for the prediction results."""

  def __init__(self, num_tests, concurrency):
    self._num_tests = num_tests
    self._concurrency = concurrency
    self._error = 0
    self._done = 0
    self._active = 0
    self._condition = threading.Condition()

  def inc_error(self):
    with self._condition:
      self._error += 1

  def inc_done(self):
    with self._condition:
      self._done += 1
      self._condition.notify()

  def dec_active(self):
    with self._condition:
      self._active -= 1
      self._condition.notify()

  def get_error_rate(self):
    with self._condition:
      while self._done != self._num_tests:
        self._condition.wait()
      return self._error / float(self._num_tests)

  def throttle(self):
    with self._condition:
      while self._active == self._concurrency:
        self._condition.wait()
      self._active += 1


def _create_rpc_callback(label, result_counter):
  """Creates RPC callback function.

  Args:
    label: The correct label for the predicted example.
    result_counter: Counter for the prediction result.
  Returns:
    The callback function.
  """
  def _callback(result_future):
    """Callback function.

    Calculates the statistics for the prediction result.

    Args:
      result_future: Result future of the RPC.
    """
    exception = result_future.exception()
    if exception:
      result_counter.inc_error()
      print(exception)
    else:
      sys.stdout.write('.')
      sys.stdout.flush()
      response = numpy.array(
          result_future.result().outputs['scores'].float_val)
      prediction = numpy.argmax(response)
      if label != prediction:
        result_counter.inc_error()
    result_counter.inc_done()
    result_counter.dec_active()
  return _callback


def do_inference(hostport, work_dir, concurrency, num_tests):
  """Tests PredictionService with concurrent requests.

  Args:
    hostport: Host:port address of the PredictionService.
    work_dir: The full path of working directory for test data set.
    concurrency: Maximum number of concurrent requests.
    num_tests: Number of test images to use.
  Returns:
    The classification error rate.

  Raises:
    IOError: An error occurred processing test data set.
  """
  test_data_set = mnist_input_data.read_data_sets(work_dir).test
  host, port = hostport.split(':')
  channel = implementations.insecure_channel(host, int(port))
  stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
  result_counter = _ResultCounter(num_tests, concurrency)
  for _ in range(num_tests):
    request = predict_pb2.PredictRequest()
    request.model_spec.name = 'mnist'
    request.model_spec.signature_name = 'predict_images'
    image, label = test_data_set.next_batch(1)
    request.inputs['images'].CopyFrom(
        tf.contrib.util.make_tensor_proto(image[0], shape=[1, image[0].size]))
    result_counter.throttle()
    result_future = stub.Predict.future(request, 5.0)  # 5 seconds
    result_future.add_done_callback(
        _create_rpc_callback(label[0], result_counter))
  return result_counter.get_error_rate()


def main(_):
  if FLAGS.num_tests > 10000:
    print('num_tests should not be greater than 10k')
    return
  if not FLAGS.server:
    print('please specify server host:port')
    return
  error_rate = do_inference(FLAGS.server, FLAGS.work_dir,
                            FLAGS.concurrency, FLAGS.num_tests)
  print('\nInference error rate: %s%%' % (error_rate * 100))


if __name__ == '__main__':
  tf.app.run()

剩下的就是build客户端代码,如下

# build客户端python代码(mnist_client即mnist_client.py,同样在BUILD文件中配置,类似makefile)
bazel build //tensorflow_serving/example:mnist_client 

# 运行并预测
bazel-bin/tensorflow_serving/example/mnist_client --num_tests=1000 --server=localhost:9000

还有一些就是关于BUILD文件的构建,以及C++和python在传入数据及取出预测结果时的一些API,之后有时间再续。

 

参考链接:

https://blog.csdn.net/bingningning/article/details/72933932

https://blog.csdn.net/wc781708249/article/details/78606514

你可能感兴趣的:(TensorFlow serving 安装教程与使用(2))