【BZOJ3669】NOI2014-魔法森林(神奇的解法)

在一个魔法森林中,有n个节点(n<=50000),m条边(m<=100000),每个节点有两个值ai,bi,1<=ai,bi<=50000。有一个精灵要从节点1到达节点n,一个节点i可以经过的要求是它携带的两个值A,B可满足A>=ai,B>=bi,求min(A+B)。
本题目的标准解法是LCT(link-cut-tree),这里讨论一种基于搜索算法的解决方法,其编程复杂性和理解难度略优于LCT做法。
如果每个节点只有一个值ai,则本题是一道标准的简单动态规划:
dp[i]=max(min(dp[j]),ai) map[i][j]=1
可以使用spfa或其他最短路算法实现。当每个节点的值从1个变为2个时,最容易想到的做法是,枚举其中一个值A,然后用spfa求最小的B,利用A+B更新答案。代码实现如下:

#include 
#include 
#include 
#include 
#include 
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
int n,m,i,j,a,b,best=100001;
struct nod{
    int nex,a,b;
};
vector lin[50005];
int dp[50001],q[50005];
bool vis[50001];
int ans[50001];
int spfa(int a)
{
    if (ans[a]!=0) return ans[a];
    memset(vis,0,sizeof(vis));
    memset(dp,-1,sizeof(dp));
    dp[1]=0;
    int head,tail;
    head=tail=1;
    q[1]=1;
    vis[1]=1;
    int now,xia,b;
    nod nex;
    while (head<=tail)
    {
        now=q[head%50003];
        vis[now]=0;
        for (int j=0;jif (nex.a>a) continue;
            b=max(dp[now],nex.b);
            if (dp[xia]==-1 || bif (vis[xia]==0)
                {
                    vis[xia]=1;
                    tail++;
                    q[tail%50003]=xia;
                }
            }
        }
        head++;
    }
    if (dp[n]==-1) ans[a]=-1; else ans[a]=dp[n]+a;
    if (dp[n]==-1) return -1;
    return dp[n]+a;
}

int main()
{
    //freopen("1.txt","r",stdin);
    memset(ans,0,sizeof(ans));
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++) lin[i].clear();
    nod temp;
    for (int k=1;k<=m;k++)
    {
        scanf("%d%d%d%d",&i,&j,&a,&b);
        //cout<
        if (i==j) continue;
        temp.nex=j; temp.a=a; temp.b=b;
        lin[i].push_back(temp);
        temp.nex=i;
        lin[j].push_back(temp);
    }
    if (spfa(50000)==-1)
    {
        cout<<-1<return 0;
    }
    for (int i=1;i<=50000;i++)
    {
        int temp=spfa(i);
        if (temp!=-1) best=min(best,temp);
    }
    cout<

这个做法很容易想到,但极限情况下需要做50000次spfa,只能得到25分,需要考虑其是否有优化点。(提交记录见http://uoj.ac/submission/4830)
优化1:
在起初时,需要枚举的区间是[1,50000]中的每一个A,假设在A=25000时,B=15000。最终答案ans必然满足ans<=40000,因此,A 在[40000,50000]这个区间不可能产生最优解,可以迅速剪去。同理,假设当前最优解best是30000,由于当A<=25000时,满足条件A的边数会比25000时有所减少,B必然会满足B>=15000, 因此,当A在[30000-15000,25000]=[15000,25000]这个区间时,也不可能产生最优解,可以剪去。
利用这个思路,可以使用dfs的思想去按照中点的顺序枚举每一个节点,思路如下:
1.搜索区间(l,r),首先对中点mid求其spfa后的结果temp,并更新全局当前最优解best。
2.搜索区间(l,min(mid,best-(temp-mid)))。
3.搜索区间(mid+1,min(r,best))。
实现的过程中需要注意使用dp[i]记录每一个spfa(i)的值,避免重复运算。

int dfs(int l,int r)
{
    //cout<
    if (l==r)
    {
        int temp=spfa(l);
        if (temp!=-1) best=min(best,temp);
        return 0;
    }
    if (l>r) return 0;
    int mid=(l+r)/2;
    int temp=spfa(mid);
    if (temp==-1)
    {
        dfs(mid+1,r);
        return 0;
    }
    best=min(best,temp);
    //左端点 ll+temp
    //A的上限
    int lef=best-(temp-mid);
    dfs(l,min(lef,mid));
    dfs(mid+1,min(r,best));
    return 0;
}

加上这个优化后,程序的效率有显著的提高,可以得到50分。(提交记录见http://uoj.ac/submission/4831)
优化2:
在spfa的过程中,会枚举每个节点i的每一条边,由于存边的时候是杂乱无序的,因此只能枚举每个节点所有的边。为了优化枚举的过程,我们可以将每个节点对应的边按照a的值从小到大排序,在spfa(a)的过程中,一旦枚举到某一个大于a的边时,就break掉,缩小的枚举的量。这个优化是针对spfa实现过程中的一个优化,但是效果显著,可以得到70分。(提交记录见http://uoj.ac/submission/4834)
优化3:
使用了spfa算法实现,当程序效率出现问题时,可以考虑spfa算法的两个优化,本处只考虑其中一种优化。当加入队尾的节点的距离比当前队首节点的距离大时,交换两个节点在队列中的位置。
if (dp[q[(head+1)%50003]]>dp[q[tail%50003]])
{
swap(q[(head+1)%50003],q[tail%50003]);
}
加上这个优化,本题已经取得97分,耗时3858ms,通过了NOI比赛时的所有正式数据,OJ附加数据中一组超时。(提交记录见http://uoj.ac/submission/4833)
优化4:
当A变化时,B随之变化的图像并不是连续的,而是一些离散的点,例如:
当A=1,2,3…20时,B=10000,
当A=21,22,23…30时,B=9500,

即:当A变化时,B会在某些点产生突变,而不是随着A的变化连续变化。
那么,对于一个搜索区间[l,r],如果spfa(l)==spfa(r),则不需要对这个区间进行枚举了。
在以上基础上应用此优化,本题中取得了97分,耗时2063ms,在之前的基础上效率得到了显著提升。(提交记录见http://uoj.ac/submission/4849)
优化5:
在搜索算法无论如何也不能在有限时间求出结果时,可以采用卡时的策略,在程序即将超过时间限制时,停止运算,将当前最优解输出,有一定概率得到正确的结果。
修改代码提交后,本题终于取得了100分,并通过了附加的多组数据,总耗时1758ms,在(提交记录见http://uoj.ac/submission/4850)
实际上,本题目在此基础上还有很多优化,例如:对A,B进行离散化,缩小枚举的范围;使用spfa算法的两个优化;把spfa算法改为最小生成树等。都可以使效率得到提升,请读者自行尝试。

/*
AUTHOR:aqx
PROG:魔法森林
LANG:c++
*/
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
int cnt=0;
int n,m,i,j,a,b,best=100001;
struct nod{
    int nex,a,b;
};
vector lin[50005];
int dp[50001],q[50005];
bool vis[50001];
int ans[50001];
int cmp(nod x,nod y)
{
    return x.a<y.a;
}
inline int spfa(int a)
{
    if (ans[a]!=0) return ans[a];
    memset(vis,0,sizeof(vis));
    memset(dp,-1,sizeof(dp));
    dp[1]=0;
    int head,tail;
    head=tail=1;
    q[1]=1;
    vis[1]=1;
    int now,xia,b;
    nod nex;
    while (head<=tail)
    {
        now=q[head%50003];
        vis[now]=0;
        if (dp[n]!=-1 && dp[now]>=dp[n])
        {
            head++;
            continue;
        }
        for (int j=0;jif (nex.a>a) break;
            b=max(dp[now],nex.b);
            if (dp[xia]==-1 || bif (vis[xia]==0)
                {
                    vis[xia]=1;
                    tail++;
                    q[tail%50003]=xia;
                    if (dp[q[(head+1)%50003]]>dp[q[tail%50003]])
                    {
                        swap(q[(head+1)%50003],q[tail%50003]);
                    }
                }
            }
        }
        head++;
    }
    if (dp[n]==-1) ans[a]=-1; else ans[a]=dp[n]+a;
    if (dp[n]==-1) return -1;
    return dp[n]+a;
}

int dfs(int l,int r)
{
    cnt++;
    if (cnt>1000) return 0;
    //cout<' '<' '<if (l==r)
    {
        int temp=spfa(l);
        if (temp!=-1) best=min(best,temp);
        return 0;
    }
    if (l>r) return 0;
    int mid=(l+r)/2;
    int temp=spfa(mid);
    if (temp==-1)
    {
        dfs(mid+1,min(r,best));
        return 0;
    }
    best=min(best,temp);
    //左端点 ll+temp
    //A的上限
    int lef=best-(temp-mid);
    if (spfa(l)-l!=spfa(mid)-mid) dfs(l,min(lef,mid));
    else
    {
        int temp=spfa(l);
        if (temp!=-1) best=min(best,temp);
    }
    if (spfa(r)-r!=spfa(mid)-mid) dfs(mid+1,min(r,best));
    return 0;
}

int main()
{
    int zuida=0;
    //freopen("1.txt","r",stdin);
    memset(ans,0,sizeof(ans));
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++) lin[i].clear();
    nod temp;
    for (int k=1;k<=m;k++)
    {
        scanf("%d%d%d%d",&i,&j,&b,&a);
        //cout<' '<if (i==j) continue;
        zuida=max(zuida,a);
        temp.nex=j; temp.a=a; temp.b=b;
        lin[i].push_back(temp);
        temp.nex=i;
        lin[j].push_back(temp);
    }
    for (int i=1;i<=n;i++)
    {
        sort(lin[i].begin(),lin[i].end(),cmp);
    }
    if (spfa(50000)==-1)
    {
        cout<<-1<return 0;
    }
    dfs(1,zuida);
    cout<

你可能感兴趣的:(算法)