现实企业级Java开发中,有时候我们会碰到下面这些问题:
OutOfMemoryError,内存不足
内存泄露
线程死锁
锁争用(Lock Contention)
Java进程消耗CPU过高
......
这些问题在日常开发中可能被很多人忽视(比如有的人遇到上面的问题只是重启服务器或者调大内存,而不会深究问题根源),但能够理解并解决这些问题是Java程序员进阶的必备要求。本文将对一些常用的JVM性能调优监控工具进行介绍,希望能起抛砖引玉之用。本文参考了网上很多资料,难以一一列举,在此对这些资料的作者表示感谢!关于JVM性能调优相关的资料,请参考文末。
A、 jps(Java Virtual Machine Process Status Tool)
jps主要用来输出JVM中运行的进程状态信息。语法格式如下:
jps [options] [hostid]
如果不指定hostid就默认为当前主机或服务器。
命令行参数选项说明如下:
-q 不输出类名、Jar名和传入main方法的参数
-m 输出传入main方法的参数
-l 输出main类或Jar的全限名
-v 输出传入JVM的参数
比如下面:
root@ubuntu:/# jps -m -l
2458 org.artifactory.standalone.main.Main /usr/local/artifactory-2.2.5/etc/jetty.xml
29920 com.sun.tools.hat.Main -port 9998 /tmp/dump.dat
3149 org.apache.catalina.startup.Bootstrap start
30972 sun.tools.jps.Jps -m -l
8247 org.apache.catalina.startup.Bootstrap start
25687 com.sun.tools.hat.Main -port 9999 dump.dat
21711 mrf-center.jar
B、 jstack
jstack主要用来查看某个Java进程内的线程堆栈信息。语法格式如下:
jstack [option] pid
jstack [option] executable core
jstack [option] [server-id@]remote-hostname-or-ip
命令行参数选项说明如下:
-l long listings,会打印出额外的锁信息,在发生死锁时可以用jstack -l pid来观察锁持有情况
-m mixed mode,不仅会输出Java堆栈信息,还会输出C/C++堆栈信息(比如Native方法)
jstack可以定位到线程堆栈,根据堆栈信息我们可以定位到具体代码,所以它在JVM性能调优中使用得非常多。下面我们来一个实例找出某个Java进程中最耗费CPU的Java线程并定位堆栈信息,用到的命令有ps、top、printf、jstack、grep。
第一步先找出Java进程ID,我部署在服务器上的Java应用名称为mrf-center:
root@ubuntu:/# ps -ef | grep mrf-center | grep -v grep
root 21711 1 1 14:47 pts/3 00:02:10 java -jar mrf-center.jar
得到进程ID为21711,第二步找出该进程内最耗费CPU的线程,可以使用ps -Lfp pid或者ps -mp pid -o THREAD, tid, time或者top -Hp pid,我这里用第三个,输出如下:
TIME列就是各个Java线程耗费的CPU时间,CPU时间最长的是线程ID为21742的线程,用
printf "%x\n" 21742
得到21742的十六进制值为54ee,下面会用到。
OK,下一步终于轮到jstack上场了,它用来输出进程21711的堆栈信息,然后根据线程ID的十六进制值grep,如下:
root@ubuntu:/# jstack 21711 | grep 54ee
"PollIntervalRetrySchedulerThread" prio=10 tid=0x00007f950043e000 nid=0x54ee in Object.wait() [0x00007f94c6eda000]
可以看到CPU消耗在PollIntervalRetrySchedulerThread这个类的Object.wait(),我找了下我的代码,定位到下面的代码:
// Idle wait
getLog().info("Thread [" + getName() + "] is idle waiting...");
schedulerThreadState = PollTaskSchedulerThreadState.IdleWaiting;
long now = System.currentTimeMillis();
long waitTime = now + getIdleWaitTime();
long timeUntilContinue = waitTime - now;
synchronized(sigLock) {
try {
if(!halted.get()) {
sigLock.wait(timeUntilContinue);
}
}
catch (InterruptedException ignore) {
}
}
它是轮询任务的空闲等待代码,上面的sigLock.wait(timeUntilContinue)就对应了前面的Object.wait()。
C、 jmap(Memory Map)和jhat(Java Heap Analysis Tool)
jmap用来查看堆内存使用状况,一般结合jhat使用。
jmap语法格式如下:
jmap [option] pid
jmap [option] executable core
jmap [option] [server-id@]remote-hostname-or-ip
如果运行在64位JVM上,可能需要指定-J-d64命令选项参数。
jmap -permstat pid
打印进程的类加载器和类加载器加载的持久代对象信息,输出:类加载器名称、对象是否存活(不可靠)、对象地址、父类加载器、已加载的类大小等信息,如下图:
使用jmap -heap pid查看进程堆内存使用情况,包括使用的GC算法、堆配置参数和各代中堆内存使用情况。比如下面的例子:
[unp_apay@jqwebhost118 logs]$ jmap -heap 2387
Attaching to process ID 2387, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 25.201-b09
using thread-local object allocation.
Parallel GC with 8 thread(s)
Heap Configuration:
MinHeapFreeRatio = 0
MaxHeapFreeRatio = 100
MaxHeapSize = 2147483648 (2048.0MB)
NewSize = 1073741824 (1024.0MB)
MaxNewSize = 1073741824 (1024.0MB)
OldSize = 1073741824 (1024.0MB)
NewRatio = 2
SurvivorRatio = 8
MetaspaceSize = 21807104 (20.796875MB)
CompressedClassSpaceSize = 1073741824 (1024.0MB)
MaxMetaspaceSize = 17592186044415 MB
G1HeapRegionSize = 0 (0.0MB)
Heap Usage:
PS Young Generation
Eden Space:
capacity = 844103680 (805.0MB)
used = 565375416 (539.1840133666992MB)
free = 278728264 (265.8159866333008MB)
66.9793805424471% used
From Space:
capacity = 120061952 (114.5MB)
used = 48873760 (46.609649658203125MB)
free = 71188192 (67.89035034179688MB)
40.70711760541758% used
To Space:
capacity = 109576192 (104.5MB)
used = 0 (0.0MB)
free = 109576192 (104.5MB)
0.0% used
PS Old Generation
capacity = 1073741824 (1024.0MB)
used = 53589104 (51.10655212402344MB)
free = 1020152720 (972.8934478759766MB)
4.990874230861664% used
45604 interned Strings occupying 4416120 bytes.
使用jmap -histo[:live] pid查看堆内存中的对象数目、大小统计直方图,如果带上live则只统计活对象,如下:
[unp_apay@jqwebhost118 logs]$ jmap -histo:live 2387
num #instances #bytes class name
----------------------------------------------
1: 137724 14779320 [C
2: 5375 5521344 [B
3: 137074 3289776 java.lang.String
4: 26185 2304280 java.lang.reflect.Method
5: 19138 2128000 java.lang.Class
6: 24580 2098224 [Ljava.lang.Object;
7: 10806 2064240 [I
8: 56440 1806080 java.util.concurrent.ConcurrentHashMap$Node
9: 35119 1123808 java.util.HashMap$Node
10: 23707 948280 java.util.LinkedHashMap$Entry
11: 13629 939704 [Ljava.util.HashMap$Node;
12: 9570 535920 java.util.LinkedHashMap
13: 404 437864 [Ljava.util.concurrent.ConcurrentHashMap$Node;
14: 8652 415296 java.util.HashMap
15: 7783 373584 org.aspectj.weaver.reflect.ShadowMatchImpl
16: 15695 350288 [Ljava.lang.Class;
17: 10490 335680 java.util.Hashtable$Entry
18: 13649 327576 java.util.ArrayList
19: 20446 327136 java.lang.Object
20: 11104 266496 org.apache.catalina.loader.ResourceEntry
21: 7783 249056 org.aspectj.weaver.patterns.ExposedState
22: 4132 165280 java.lang.ref.SoftReference
23: 58 165056 [Ljava.nio.channels.SelectionKey;
class name是对象类型,说明如下:
B byte
C char
D double
F float
I int
J long
Z boolean
[ 数组,如[I表示int[]
[L+类名 其他对象
还有一个很常用的情况是:用jmap把进程内存使用情况dump到文件中,再用jhat分析查看。jmap进行dump命令格式如下:
jmap -dump:format=b,file=dumpFileName
我一样地对上面进程ID为21711进行Dump:
root@ubuntu:/# jmap -dump:format=b,file=/tmp/dump.dat 21711
Dumping heap to /tmp/dump.dat ...
Heap dump file created
dump出来的文件可以用MAT、VisualVM等工具查看,这里用jhat查看:
root@ubuntu:/# jhat -port 9998 /tmp/dump.dat
Reading from /tmp/dump.dat...
Dump file created Tue Jan 28 17:46:14 CST 2014
Snapshot read, resolving...
Resolving 132207 objects...
然后就可以在浏览器中输入主机地址:9998查看了:
上面红线框出来的部分大家可以自己去摸索下,最后一项支持OQL(对象查询语言)。
D、jstat(JVM统计监测工具)
语法格式如下:
jstat [ generalOption | outputOptions vmid [interval[s|ms] [count]] ]
vmid是虚拟机ID,在Linux/Unix系统上一般就是进程ID。interval是采样时间间隔。count是采样数目。比如下面输出的是GC信息,采样时间间隔为250ms,采样数为4:
[unp_apay@jqwebhost118 ~]$ jstat -gc 2387 250 4
S0C S1C S0U S1U EC EU OC OU MC MU CCSC CCSU YGC YGCT FGC FGCT GCT
101888.0 104448.0 0.0 0.0 839680.0 50855.3 1048576.0 47403.8 98392.0 94891.8 12672.0 11971.8 8 0.203 5 0.400 0.603
101888.0 104448.0 0.0 0.0 839680.0 50855.3 1048576.0 47403.8 98392.0 94891.8 12672.0 11971.8 8 0.203 5 0.400 0.603
101888.0 104448.0 0.0 0.0 839680.0 50855.3 1048576.0 47403.8 98392.0 94891.8 12672.0 11971.8 8 0.203 5 0.400 0.603
101888.0 104448.0 0.0 0.0 839680.0 50855.3 1048576.0 47403.8 98392.0 94891.8 12672.0 11971.8 8 0.203 5 0.400 0.603
要明白上面各列的意义,先看JVM堆内存布局:
可以看出:
堆内存 = 年轻代 + 年老代 + 永久代
年轻代 = Eden区 + 两个Survivor区(From和To)
现在来解释各列含义:
S0C、S1C、S0U、S1U:Survivor 0/1区容量(Capacity)和使用量(Used)
EC、EU:Eden区容量和使用量
OC、OU:年老代容量和使用量
PC、PU:永久代容量和使用量
YGC、YGT:年轻代GC次数和GC耗时
FGC、FGCT:Full GC次数和Full GC耗时
GCT:GC总耗时
其他JVM性能调优参考资料:
《Java虚拟机规范》
《Java Performance》
《Trouble Shooting Guide for JavaSE 6 with HotSpot VM》: http://www.oracle.com/technetwork/java/javase/tsg-vm-149989.pdf
《Effective Java》
VisualVM: http://docs.oracle.com/javase/7/docs/technotes/guides/visualvm/
jConsole: http://docs.oracle.com/javase/1.5.0/docs/guide/management/jconsole.html
Monitoring and Managing JavaSE 6 Applications: http://www.oracle.com/technetwork/articles/javase/monitoring-141801.html