LCS
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 207 Accepted Submission(s): 105
Problem Description
You are given two sequence
{a1,a2,...,an} and
{b1,b2,...,bn}. Both sequences are permutation of
{1,2,...,n}. You are going to find another permutation
{p1,p2,...,pn} such that the length of LCS (longest common subsequence) of
{ap1,ap2,...,apn} and
{bp1,bp2,...,bpn} is maximum.
Input
There are multiple test cases. The first line of input contains an integer
T, indicating the number of test cases. For each test case:
The first line contains an integer
n(1≤n≤105) - the length of the permutation. The second line contains
n integers
a1,a2,...,an. The third line contains
nintegers
b1,b2,...,bn.
The sum of
n in the test cases will not exceed
2×106.
Output
For each test case, output the maximum length of LCS.
Sample Input
2 3 1 2 3 3 2 1 6 1 5 3 2 6 4 3 6 2 4 5 1
Sample Output
Source
BestCoder Round #58 (div.2)
有几个循环置换,且长度大于2,那么n-多少就是答案
#include
#include
#include
#include
using namespace std;
#define maxn 100007
int a[maxn],b[maxn],vis[maxn];
int dfs(int x){
vis[x] = 1;
if(vis[b[a[x]]]) return 1;
return dfs(b[a[x]])+1;
}
int main(){
int t,n,u;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i = 1;i <= n; i++){
scanf("%d",&u);
a[u] = i;
}
for(int i = 1;i <= n; i++)
scanf("%d",&b[i]);
memset(vis,0,sizeof(vis));
int ans = n;
for(int i = 1;i <= n; i++){
if(vis[i] == 0) {
if(dfs(i) > 1) ans--;
}
}
printf("%d\n",ans);
}
return 0;
}