本文主要基于Android4.4源码的事件处理流程进行了分析。并参照了如下文章并引用了部分资源。
http://blog.csdn.net/windskier/article/details/6966264
http://www.eoeandroid.com/home.php?mod=space&uid=10407&do=blog&id=5070
http://blog.sina.com.cn/s/blog_89f592f50101394l.html
http://blog.csdn.net/luoshengyang/article/details/6882903
事件处理流程
1)InputManager负责读取事件并把事件送到frameworks的java层
2)WindowManagerService里会有一个InputMonitor类来监听事件变化并做相应的分发处理。
3)在WindowManagerService会有一个WindowManagerPolicy来做消息拦截处理。
4)WindowManagerService会把消息发给最上面运行的窗口接收
系统开机的时候,SystemServer会启动InputManagerSercice和WindowManagerService。
SystemServer.java
Slog.i(TAG, "Input Manager");
inputManager = new InputManagerService(context, wmHandler);
Slog.i(TAG, "Window Manager");
wm = WindowManagerService.main(context, power, display, inputManager,
wmHandler, factoryTest != SystemServer.FACTORY_TEST_LOW_LEVEL,
!firstBoot, onlyCore);
ServiceManager.addService(Context.WINDOW_SERVICE, wm);
ServiceManager.addService(Context.INPUT_SERVICE, inputManager);
ActivityManagerService.self().setWindowManager(wm);
inputManager.setWindowManagerCallbacks(wm.getInputMonitor());
inputManager.start();
上述过程主要做了如下事情:
(1)创建了InputManagerSercice和WindowManagerService的实例
(2)将InputManagerServcie的引用传递给WindowManagerService
(3)在InputManagerSercice中设定了WindowManagerService的回调函数
—— 将WindowManagerService的成员InputMonitor赋值给InputManagerSercice的成员InputManagerSercice的成员mWindowManagerCallbacks
(4)启动InputManagerSercice
创建InputManagerSercice时传递的参数有一个wmHander,这个handler是运行在以下Thread中的
// Create a handler thread just for the window manager to enjoy.
HandlerThread wmHandlerThread = new HandlerThread("WindowManager");
wmHandlerThread.start();
public InputManagerService(Context context, Handler handler) {
this.mContext = context;
this.mHandler = new InputManagerHandler(handler.getLooper());
mUseDevInputEventForAudioJack =
context.getResources().getBoolean(R.bool.config_useDevInputEventForAudioJack);
Slog.i(TAG, "Initializing input manager, mUseDevInputEventForAudioJack="
+ mUseDevInputEventForAudioJack);
mPtr = nativeInit(this, mContext, mHandler.getLooper().getQueue());
mAppRSMouseMode = MOUSE_MODE_DEFAULT;
mAppStylusFingerOnlyMode = true;
mCurrentStylusFingerOnlyMode = true;
mCurrentTouchLocked = false;
mUserSetup = false;
}
最重要的是nativeInit,实现如下:
com_android_server_Input_InputManagerService.cpp
static jint nativeInit(JNIEnv* env, jclass clazz,
jobject serviceObj, jobject contextObj, jobject messageQueueObj) {
sp messageQueue = android_os_MessageQueue_getMessageQueue(env, messageQueueObj);
if (messageQueue == NULL) {
jniThrowRuntimeException(env, "MessageQueue is not initialized.");
return 0;
}
NativeInputManager* im = new NativeInputManager(contextObj, serviceObj,
messageQueue->getLooper());
im->incStrong(0);
return reinterpret_cast(im);
}
这里的MessageQueue和Looper都是wmHandler运行的Thread中的。
在native创建了NativeInputManager,并把指针返回给Java层。
NativeInputManager构造的时候,会创建了一个EventHub实例,并且把这个EventHub作为参数来创建InputManager对象。注意,这里的InputManager类是定义在C++层的,和前面在Java层的InputManager不一样,不过它们是对应关系。EventHub类是真正执行监控键盘事件操作的地方。
NativeInputManager::NativeInputManager(jobject contextObj,
jobject serviceObj, const sp& looper) :
mLooper(looper) {
JNIEnv* env = jniEnv();
mContextObj = env->NewGlobalRef(contextObj);
mServiceObj = env->NewGlobalRef(serviceObj);
{
AutoMutex _l(mLock);
mLocked.systemUiVisibility = ASYSTEM_UI_VISIBILITY_STATUS_BAR_VISIBLE;
mLocked.pointerSpeed = 0;
mLocked.mouseMode = 0;
mLocked.useRSMouse = false;
mLocked.pointerGesturesEnabled = true;
mLocked.showTouches = false;
mLocked.showStylus = false;
mLocked.showEraser = false;
mLocked.penToTouchDelayMs = -1;
mLocked.lockTouch = false;
mLocked.fingerOnlyMode = true;
mLocked.stylusLockOnEdge = false;
mLocked.leftHandedMode = false;
}
sp eventHub = new EventHub();
mInputManager = new InputManager(eventHub, this, this);
InputManager.cpp
InputManager::InputManager(
const sp& eventHub,
const sp& readerPolicy,
const sp& dispatcherPolicy) {
mDispatcher = new InputDispatcher(dispatcherPolicy);
mReader = new InputReader(eventHub, readerPolicy, mDispatcher);
initialize();
}
这里主要是创建了一个InputDispatcher对象和一个InputReader对象,并且分别保存在成员变量mDispatcher和mReader中。InputDispatcher类是负责把事件消息向上层传递,而InputReader类则是通过EventHub类来实现读取事件的。
InputDispatcher在构造的时候,会创建一个Looper对象,Looper的核心其实是一个消息队列,通过不停的处理Looper消息队列中的消息来完成线程间的通信。这个Looper对象以后会用到。
创建了这两个对象后,还要调用initialize函数来执行其它的初始化操作。
void InputManager::initialize() {
mReaderThread = new InputReaderThread(mReader);
mDispatcherThread = new InputDispatcherThread(mDispatcher);
}
至此,InputManagerService的创建工作就完成了。也生成了InputManager相关的一系列对象。下一步的主要工作就是启动InputManager了。
InputManagerService的start函数主要是调用了nativeStart, 并把之前保存的NativeInputManager的指针mPtr传递下去。
com_android_server_Input_InputManagerService.cpp
static void nativeStart(JNIEnv* env, jclass clazz, jint ptr) {
NativeInputManager* im = reinterpret_cast(ptr);
status_t result = im->getInputManager()->start();
if (result) {
jniThrowRuntimeException(env, "Input manager could not be started.");
}
}
InputManager.cpp
status_t InputManager::start() {
status_t result = mDispatcherThread->run("InputDispatcher", PRIORITY_URGENT_DISPLAY);
if (result) {
ALOGE("Could not start InputDispatcher thread due to error %d.", result);
return result;
}
result = mReaderThread->run("InputReader", PRIORITY_URGENT_DISPLAY);
if (result) {
ALOGE("Could not start InputReader thread due to error %d.", result);
mDispatcherThread->requestExit();
return result;
}
return OK;
}
这里启动之前创建的两个线程,用于读取和分发。然后就进入他们的线程函数threadLoop中。
到这里,Input子系统的初始化过程就完毕了。
当接收到事件后,需要把事件传递给对应的窗口,就需要建立起一个通道,用于它们之间的通信。
在Activity启动的时候,会通过windowmanager的addView方法将窗口加入到WMS中,并创建了ViewRoot,然后会调用ViewRoot的setView方法。
public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) {
synchronized (this) {
if (mView == null) {
......
// Schedule the first layout -before- adding to the window
// manager, to make sure we do the relayout before receiving
// any other events from the system.
requestLayout();
if ((mWindowAttributes.inputFeatures
& WindowManager.LayoutParams.INPUT_FEATURE_NO_INPUT_CHANNEL) == 0) {
mInputChannel = new InputChannel();
}
try {
mOrigWindowType = mWindowAttributes.type;
mAttachInfo.mRecomputeGlobalAttributes = true;
collectViewAttributes();
res = mWindowSession.addToDisplay(mWindow, mSeq, mWindowAttributes,
getHostVisibility(), mDisplay.getDisplayId(),
mAttachInfo.mContentInsets, mInputChannel);
} catch (RemoteException e) {
mAdded = false;
mView = null;
mAttachInfo.mRootView = null;
mInputChannel = null;
mFallbackEventHandler.setView(null);
unscheduleTraversals();
setAccessibilityFocus(null, null);
throw new RuntimeException("Adding window failed", e);
} finally {
if (restore) {
attrs.restore();
}
}
......
if (view instanceof RootViewSurfaceTaker) {
mInputQueueCallback =
((RootViewSurfaceTaker)view).willYouTakeTheInputQueue();
}
if (mInputChannel != null) {
if (mInputQueueCallback != null) {
mInputQueue = new InputQueue();
mInputQueueCallback.onInputQueueCreated(mInputQueue);
}
mInputEventReceiver = new WindowInputEventReceiver(mInputChannel,
Looper.myLooper());
try {
Activity activity = (Activity)view.getContext();
ActivityInfo ai = activity.getPackageManager().getActivityInfo(
activity.getComponentName(), PackageManager.GET_META_DATA);
mInputEventReceiver.mConsumeBatchesImmediately =
ai.metaData.getBoolean("com.nvidia.immediateInput");
} catch(Exception e) {
}
}
......
}
}
}
(1)requestLayout。
requestLayout函数来通知InputManager,这个Activity窗口是当前被激活的窗口。也就是更新激活窗口
(2)mWindowSession.addToDisplay
负责把事件接收通道的一端注册在InputManager中,也就是WMS注册InputChannel
(3)
if (view instanceof RootViewSurfaceTaker) {
mInputQueueCallback =
((RootViewSurfaceTaker)view).willYouTakeTheInputQueue();
}
if (mInputChannel != null) {
if (mInputQueueCallback != null) {
mInputQueue = new InputQueue();
mInputQueueCallback.onInputQueueCreated(mInputQueue);
}
mInputEventReceiver = new WindowInputEventReceiver(mInputChannel,
Looper.myLooper());
也就是应用程序进程注册InputChannel。
requestLayout通过handler机制,会执行ViewRoot的relayoutWindow方法,通过AIDL接口最终会调用到WMS的relayoutWindow方法。
需要注意的是:实际上WMS侧的addWindow比relayoutWindow先执行。
在relayoutWindow中调用了以下代码:
mInputMonitor.updateInputWindowsLw(true /*force*/);
/* Updates the cached window information provided to the input dispatcher. */
public void updateInputWindowsLw(boolean force) {
if (!force && !mUpdateInputWindowsNeeded) {
return;
}
mUpdateInputWindowsNeeded = false;
if (false) Slog.d(WindowManagerService.TAG, ">>>>>> ENTERED updateInputWindowsLw");
// Populate the input window list with information about all of the windows that
// could potentially receive input.
// As an optimization, we could try to prune the list of windows but this turns
// out to be difficult because only the native code knows for sure which window
// currently has touch focus.
final WindowStateAnimator universeBackground = mService.mAnimator.mUniverseBackground;
final int aboveUniverseLayer = mService.mAnimator.mAboveUniverseLayer;
boolean addedUniverse = false;
// If there's a drag in flight, provide a pseudowindow to catch drag input
final boolean inDrag = (mService.mDragState != null);
if (inDrag) {
if (WindowManagerService.DEBUG_DRAG) {
Log.d(WindowManagerService.TAG, "Inserting drag window");
}
final InputWindowHandle dragWindowHandle = mService.mDragState.mDragWindowHandle;
if (dragWindowHandle != null) {
addInputWindowHandleLw(dragWindowHandle);
} else {
Slog.w(WindowManagerService.TAG, "Drag is in progress but there is no "
+ "drag window handle.");
}
}
final int NFW = mService.mFakeWindows.size();
for (int i = 0; i < NFW; i++) {
addInputWindowHandleLw(mService.mFakeWindows.get(i).mWindowHandle);
}
// Add all windows on the default display.
final int numDisplays = mService.mDisplayContents.size();
for (int displayNdx = 0; displayNdx < numDisplays; ++displayNdx) {
WindowList windows = mService.mDisplayContents.valueAt(displayNdx).getWindowList();
for (int winNdx = windows.size() - 1; winNdx >= 0; --winNdx) {
final WindowState child = windows.get(winNdx);
final InputChannel inputChannel = child.mInputChannel;
final InputWindowHandle inputWindowHandle = child.mInputWindowHandle;
if (inputChannel == null || inputWindowHandle == null || child.mRemoved) {
// Skip this window because it cannot possibly receive input.
continue;
}
final int flags = child.mAttrs.flags;
final int privateFlags = child.mAttrs.privateFlags;
final int type = child.mAttrs.type;
final boolean hasFocus = (child == mInputFocus);
final boolean isVisible = child.isVisibleLw();
final boolean hasWallpaper = (child == mService.mWallpaperTarget)
&& (type != WindowManager.LayoutParams.TYPE_KEYGUARD);
final boolean onDefaultDisplay = (child.getDisplayId() == Display.DEFAULT_DISPLAY);
// If there's a drag in progress and 'child' is a potential drop target,
// make sure it's been told about the drag
if (inDrag && isVisible && onDefaultDisplay) {
mService.mDragState.sendDragStartedIfNeededLw(child);
}
if (universeBackground != null && !addedUniverse
&& child.mBaseLayer < aboveUniverseLayer && onDefaultDisplay) {
final WindowState u = universeBackground.mWin;
if (u.mInputChannel != null && u.mInputWindowHandle != null) {
addInputWindowHandleLw(u.mInputWindowHandle, u, u.mAttrs.flags,
u.mAttrs.privateFlags, u.mAttrs.type,
true, u == mInputFocus, false);
}
addedUniverse = true;
}
if (child.mWinAnimator != universeBackground) {
addInputWindowHandleLw(inputWindowHandle, child, flags, privateFlags, type,
isVisible, hasFocus, hasWallpaper);
}
}
}
// Send windows to native code.
mService.mInputManager.setInputWindows(mInputWindowHandles);
// Clear the list in preparation for the next round.
clearInputWindowHandlesLw();
if (false) Slog.d(WindowManagerService.TAG, "<<<<<<< EXITED updateInputWindowsLw");
}
InputManagerService.java
public void setInputWindows(InputWindowHandle[] windowHandles) {
nativeSetInputWindows(mPtr, windowHandles);
}
接下来会调用native的setInputWindows方法。
com_android_server_Input_inputManagerService.cpp
static void nativeSetInputWindows(JNIEnv* env, jclass clazz,
jint ptr, jobjectArray windowHandleObjArray) {
NativeInputManager* im = reinterpret_cast(ptr);
im->setInputWindows(env, windowHandleObjArray);
}
void NativeInputManager::setInputWindows(JNIEnv* env, jobjectArray windowHandleObjArray) {
Vector > windowHandles;
if (windowHandleObjArray) {
jsize length = env->GetArrayLength(windowHandleObjArray);
for (jsize i = 0; i < length; i++) {
jobject windowHandleObj = env->GetObjectArrayElement(windowHandleObjArray, i);
if (! windowHandleObj) {
break; // found null element indicating end of used portion of the array
}
sp windowHandle =
android_server_InputWindowHandle_getHandle(env, windowHandleObj);
if (windowHandle != NULL) {
windowHandles.push(windowHandle);
}
env->DeleteLocalRef(windowHandleObj);
}
}
mInputManager->getDispatcher()->setInputWindows(windowHandles);
// Do this after the dispatcher has updated the window handle state.
bool newPointerGesturesEnabled = true;
size_t numWindows = windowHandles.size();
for (size_t i = 0; i < numWindows; i++) {
const sp& windowHandle = windowHandles.itemAt(i);
const InputWindowInfo* windowInfo = windowHandle->getInfo();
if (windowInfo && windowInfo->hasFocus && (windowInfo->inputFeatures
& InputWindowInfo::INPUT_FEATURE_DISABLE_TOUCH_PAD_GESTURES)) {
newPointerGesturesEnabled = false;
}
}
uint32_t changes = 0;
{ // acquire lock
AutoMutex _l(mLock);
if (mLocked.pointerGesturesEnabled != newPointerGesturesEnabled) {
mLocked.pointerGesturesEnabled = newPointerGesturesEnabled;
changes |= InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT;
}
} // release lock
if (changes) {
mInputManager->getReader()->requestRefreshConfiguration(changes);
}
}
InputDispatcher.cpp
void InputDispatcher::setInputWindows(const Vector >& inputWindowHandles) {
#if DEBUG_FOCUS
ALOGD("setInputWindows");
#endif
{ // acquire lock
AutoMutex _l(mLock);
Vector > oldWindowHandles = mWindowHandles;
mWindowHandles = inputWindowHandles;
sp newFocusedWindowHandle;
bool foundHoveredWindow = false;
for (size_t i = 0; i < mWindowHandles.size(); i++) {
const sp& windowHandle = mWindowHandles.itemAt(i);
if (!windowHandle->updateInfo() || windowHandle->getInputChannel() == NULL) {
mWindowHandles.removeAt(i--);
continue;
}
if (windowHandle->getInfo()->hasFocus) {
newFocusedWindowHandle = windowHandle;
}
if (windowHandle == mLastHoverWindowHandle) {
foundHoveredWindow = true;
}
}
if (!foundHoveredWindow) {
mLastHoverWindowHandle = NULL;
}
if (mFocusedWindowHandle != newFocusedWindowHandle) {
if (mFocusedWindowHandle != NULL) {
#if DEBUG_FOCUS
ALOGD("Focus left window: %s",
mFocusedWindowHandle->getName().string());
#endif
sp focusedInputChannel = mFocusedWindowHandle->getInputChannel();
if (focusedInputChannel != NULL) {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS,
"focus left window");
synthesizeCancelationEventsForInputChannelLocked(
focusedInputChannel, options);
}
}
if (newFocusedWindowHandle != NULL) {
#if DEBUG_FOCUS
ALOGD("Focus entered window: %s",
newFocusedWindowHandle->getName().string());
#endif
}
mFocusedWindowHandle = newFocusedWindowHandle;
}
for (size_t i = 0; i < mTouchState.windows.size(); i++) {
TouchedWindow& touchedWindow = mTouchState.windows.editItemAt(i);
if (!hasWindowHandleLocked(touchedWindow.windowHandle)) {
#if DEBUG_FOCUS
ALOGD("Touched window was removed: %s",
touchedWindow.windowHandle->getName().string());
#endif
sp touchedInputChannel =
touchedWindow.windowHandle->getInputChannel();
if (touchedInputChannel != NULL) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"touched window was removed");
synthesizeCancelationEventsForInputChannelLocked(
touchedInputChannel, options);
}
mTouchState.windows.removeAt(i--);
}
}
// Release information for windows that are no longer present.
// This ensures that unused input channels are released promptly.
// Otherwise, they might stick around until the window handle is destroyed
// which might not happen until the next GC.
for (size_t i = 0; i < oldWindowHandles.size(); i++) {
const sp& oldWindowHandle = oldWindowHandles.itemAt(i);
if (!hasWindowHandleLocked(oldWindowHandle)) {
#if DEBUG_FOCUS
ALOGD("Window went away: %s", oldWindowHandle->getName().string());
#endif
oldWindowHandle->releaseInfo();
}
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
这个方法的主要作用就是从传进来的窗口向量中,找到哪一个窗口是获得焦点的,获得焦点的输入窗口即为当前激活的窗口,并把窗口的句柄保存在mFocusedWindowHandle中。它的定义如下:
// Focus tracking for keys, trackball, etc.
sp
这个函数最终回调用到WMS的addWindow方法,和通道建立相关的主要代码如下:
if (outInputChannel != null && (attrs.inputFeatures
& WindowManager.LayoutParams.INPUT_FEATURE_NO_INPUT_CHANNEL) == 0) {
String name = win.makeInputChannelName();
InputChannel[] inputChannels = InputChannel.openInputChannelPair(name);
win.setInputChannel(inputChannels[0]);
inputChannels[1].transferTo(outInputChannel);
mInputManager.registerInputChannel(win.mInputChannel, win.mInputWindowHandle);
}
通过InputChannel.openInputChannelPair函数来创建一对输入通道,其中一个位于WindowManagerService中,另外一个通过outInputChannel参数返回到应用程序中:
public void transferTo(InputChannel outParameter) {
if (outParameter == null) {
throw new IllegalArgumentException("outParameter must not be null");
}
nativeTransferTo(outParameter);
}
static void android_view_InputChannel_nativeTransferTo(JNIEnv* env, jobject obj,
jobject otherObj) {
if (android_view_InputChannel_getNativeInputChannel(env, otherObj) != NULL) {
jniThrowException(env, "java/lang/IllegalStateException",
"Other object already has a native input channel.");
return;
}
NativeInputChannel* nativeInputChannel =
android_view_InputChannel_getNativeInputChannel(env, obj);
android_view_InputChannel_setNativeInputChannel(env, otherObj, nativeInputChannel);
android_view_InputChannel_setNativeInputChannel(env, obj, NULL);
}
public static InputChannel[] openInputChannelPair(String name) {
if (name == null) {
throw new IllegalArgumentException("name must not be null");
}
if (DEBUG) {
Slog.d(TAG, "Opening input channel pair '" + name + "'");
}
return nativeOpenInputChannelPair(name);
}
static jobjectArray android_view_InputChannel_nativeOpenInputChannelPair(JNIEnv* env,
jclass clazz, jstring nameObj) {
const char* nameChars = env->GetStringUTFChars(nameObj, NULL);
String8 name(nameChars);
env->ReleaseStringUTFChars(nameObj, nameChars);
sp serverChannel;
sp clientChannel;
status_t result = InputChannel::openInputChannelPair(name, serverChannel, clientChannel);
if (result) {
String8 message;
message.appendFormat("Could not open input channel pair. status=%d", result);
jniThrowRuntimeException(env, message.string());
return NULL;
}
jobjectArray channelPair = env->NewObjectArray(2, gInputChannelClassInfo.clazz, NULL);
if (env->ExceptionCheck()) {
return NULL;
}
jobject serverChannelObj = android_view_InputChannel_createInputChannel(env,
new NativeInputChannel(serverChannel));
if (env->ExceptionCheck()) {
return NULL;
}
jobject clientChannelObj = android_view_InputChannel_createInputChannel(env,
new NativeInputChannel(clientChannel));
if (env->ExceptionCheck()) {
return NULL;
}
env->SetObjectArrayElement(channelPair, 0, serverChannelObj);
env->SetObjectArrayElement(channelPair, 1, clientChannelObj);
return channelPair;
}
status_t InputChannel::openInputChannelPair(const String8& name,
sp& outServerChannel, sp& outClientChannel) {
int sockets[2];
if (socketpair(AF_UNIX, SOCK_SEQPACKET, 0, sockets)) {
status_t result = -errno;
ALOGE("channel '%s' ~ Could not create socket pair. errno=%d",
name.string(), errno);
outServerChannel.clear();
outClientChannel.clear();
return result;
}
int bufferSize = SOCKET_BUFFER_SIZE;
setsockopt(sockets[0], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize));
setsockopt(sockets[0], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize));
setsockopt(sockets[1], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize));
setsockopt(sockets[1], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize));
String8 serverChannelName = name;
serverChannelName.append(" (server)");
outServerChannel = new InputChannel(serverChannelName, sockets[0]);
String8 clientChannelName = name;
clientChannelName.append(" (client)");
outClientChannel = new InputChannel(clientChannelName, sockets[1]);
return OK;
}
先看一下InputChannel的构造函数
InputChannel::InputChannel(const String8& name, int fd) :
mName(name), mFd(fd) {
#if DEBUG_CHANNEL_LIFECYCLE
ALOGD("Input channel constructed: name='%s', fd=%d",
mName.string(), fd);
#endif
int result = fcntl(mFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "channel '%s' ~ Could not make socket "
"non-blocking. errno=%d", mName.string(), errno);
}
每个channel都有一个文件描述符,这个文件描述符就是创建的socket。
通过调用Linux的socketpair()方法建立一对匿名的已经连接的套接字,然后调用setsockopt()方法为其分配内存,然后用其做为参数,创建native环境中的InputChannel对象,分别赋值给outServerChannel、和outClientChannel指针。
创建好两个native层的InputChannel对象后,存在channelPair数组中,然后通过JNI返回到JAVA环境中。
下一步,需要把刚才创建的Server端的输入通道注册到InputManager中:
mInputManager.registerInputChannel(win.mInputChannel, win.mInputWindowHandle);
public void registerInputChannel(InputChannel inputChannel,
InputWindowHandle inputWindowHandle) {
if (inputChannel == null) {
throw new IllegalArgumentException("inputChannel must not be null.");
}
nativeRegisterInputChannel(mPtr, inputChannel, inputWindowHandle, false);
}
static void nativeRegisterInputChannel(JNIEnv* env, jclass clazz,
jint ptr, jobject inputChannelObj, jobject inputWindowHandleObj, jboolean monitor) {
NativeInputManager* im = reinterpret_cast(ptr);
sp inputChannel = android_view_InputChannel_getInputChannel(env,
inputChannelObj);
if (inputChannel == NULL) {
throwInputChannelNotInitialized(env);
return;
}
sp inputWindowHandle =
android_server_InputWindowHandle_getHandle(env, inputWindowHandleObj);
status_t status = im->registerInputChannel(
env, inputChannel, inputWindowHandle, monitor);
if (status) {
String8 message;
message.appendFormat("Failed to register input channel. status=%d", status);
jniThrowRuntimeException(env, message.string());
return;
}
if (! monitor) {
android_view_InputChannel_setDisposeCallback(env, inputChannelObj,
handleInputChannelDisposed, im);
}
}
status_t NativeInputManager::registerInputChannel(JNIEnv* env,
const sp& inputChannel,
const sp& inputWindowHandle, bool monitor) {
return mInputManager->getDispatcher()->registerInputChannel(
inputChannel, inputWindowHandle, monitor);
}
status_t InputDispatcher::registerInputChannel(const sp& inputChannel,
const sp& inputWindowHandle, bool monitor) {
#if DEBUG_REGISTRATION
ALOGD("channel '%s' ~ registerInputChannel - monitor=%s", inputChannel->getName().string(),
toString(monitor));
#endif
{ // acquire lock
AutoMutex _l(mLock);
if (getConnectionIndexLocked(inputChannel) >= 0) {
ALOGW("Attempted to register already registered input channel '%s'",
inputChannel->getName().string());
return BAD_VALUE;
}
sp connection = new Connection(inputChannel, inputWindowHandle, monitor);
int fd = inputChannel->getFd();
mConnectionsByFd.add(fd, connection);
if (monitor) {
mMonitoringChannels.push(inputChannel);
}
mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this);
} // release lock
// Wake the looper because some connections have changed.
mLooper->wake();
return OK;
}
这个函数首先会通过getConnectionIndexLocked检查从参数传进来的InputChannel是否已经注册过了,如果已经注册过了,就返回一个BAD_VALUE值了,否则的话,就会创建一个Connection对象来封装即将要注册的inputChannel,并添加到mConnectionsByFd中,如果monitor为true,也把这个inputChannel添加到mMonitoringChannels中。
当需要通过管道发送消息的时候,从该列表中取出Connection对象,该对象与客户端是相对应的,之后调用mLooper->addFd()方法,把InputChannel对应的描述符添加到mLooper内部的描述符列表中。这里完成了wms的InputChannel的注册,即serverChannel。
在Looper类内部,会创建一个管道,然后Looper会睡眠在这个管道的读端,等待另外一个线程来往这个管道的写端写入新的内容,从而唤醒等待在这个管道读端的线程,除此之外,Looper还可以同时睡眠等待在其它的文件描述符上,因为它是通过Linux系统的epoll机制来批量等待指定的文件有新的内容可读的。这些其它的文件描述符就是通过Looper类的addFd成函数添加进去的了,在添加的时候,还可以指定回调函数,即当这个文件描述符所指向的文件有新的内容可读时,Looper就会调用这个hanldeReceiveCallback函数。
至此,Server端的InputChannel就注册完成了。
if (view instanceof RootViewSurfaceTaker) {
mInputQueueCallback =
((RootViewSurfaceTaker)view).willYouTakeTheInputQueue();
}
if (mInputChannel != null) {
if (mInputQueueCallback != null) {
mInputQueue = new InputQueue();
mInputQueueCallback.onInputQueueCreated(mInputQueue);
}
mInputEventReceiver = new WindowInputEventReceiver(mInputChannel,
Looper.myLooper());
这里一般会执行最后的
mInputEventReceiver = new WindowInputEventReceiver(mInputChannel,
Looper.myLooper());
接着,执行构造函数
final class WindowInputEventReceiver extends InputEventReceiver {
public WindowInputEventReceiver(InputChannel inputChannel, Looper looper) {
super(inputChannel, looper);
}
@Override
public void onInputEvent(InputEvent event) {
enqueueInputEvent(event, this, 0, true);
}
......
public InputEventReceiver(InputChannel inputChannel, Looper looper) {
if (inputChannel == null) {
throw new IllegalArgumentException("inputChannel must not be null");
}
if (looper == null) {
throw new IllegalArgumentException("looper must not be null");
}
mInputChannel = inputChannel;
mMessageQueue = looper.getQueue();
mReceiverPtr = nativeInit(new WeakReference(this),
inputChannel, mMessageQueue);
mCloseGuard.open("dispose");
}
JNI层
static jint nativeInit(JNIEnv* env, jclass clazz, jobject receiverWeak,
jobject inputChannelObj, jobject messageQueueObj) {
sp inputChannel = android_view_InputChannel_getInputChannel(env,
inputChannelObj);
if (inputChannel == NULL) {
jniThrowRuntimeException(env, "InputChannel is not initialized.");
return 0;
}
sp messageQueue = android_os_MessageQueue_getMessageQueue(env, messageQueueObj);
if (messageQueue == NULL) {
jniThrowRuntimeException(env, "MessageQueue is not initialized.");
return 0;
}
sp receiver = new NativeInputEventReceiver(env,
receiverWeak, inputChannel, messageQueue);
status_t status = receiver->initialize();
if (status) {
String8 message;
message.appendFormat("Failed to initialize input event receiver. status=%d", status);
jniThrowRuntimeException(env, message.string());
return 0;
}
receiver->incStrong(gInputEventReceiverClassInfo.clazz); // retain a reference for the object
return reinterpret_cast(receiver.get());
}
创建NativeInputEventReceiver
NativeInputEventReceiver::NativeInputEventReceiver(JNIEnv* env,
jobject receiverWeak, const sp& inputChannel,
const sp& messageQueue) :
mReceiverWeakGlobal(env->NewGlobalRef(receiverWeak)),
mInputConsumer(inputChannel), mMessageQueue(messageQueue),
mBatchedInputEventPending(false), mFdEvents(0) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Initializing input event receiver.", getInputChannelName());
#endif
}
执行初始化函数
status_t NativeInputEventReceiver::initialize() {
setFdEvents(ALOOPER_EVENT_INPUT);
return OK;
}
void NativeInputEventReceiver::setFdEvents(int events) {
if (mFdEvents != events) {
mFdEvents = events;
int fd = mInputConsumer.getChannel()->getFd();
if (events) {
mMessageQueue->getLooper()->addFd(fd, 0, events, this, NULL);
} else {
mMessageQueue->getLooper()->removeFd(fd);
}
}
}
其实,执行的最终过程向Looper中加入文件描述符,只是这里的Looper是应用程序进程的Looper。
服务端和客户端都注册了Channel,最终都向Looper中加入了文件描述符。服务端使用的Channel是InputDispatcher创建的时候生成的,这里没有Java Looper,只有native Looper。
而客户端的Looper有一个Java的Looper和一个native Looper。
JAVA Looper包含一个MessageQueue,MessageQueue对应的Native 实例是一个NativeMessageQueue实例,NativeMessageQueue在创建的时候生成一个Native Looper。
客户端UI主线程循环读取Java Looper的消息以进行下一步的处理。
其实Native Looper存在的意义就是作为JAVA Looper机制的开关器,
1. 当消息队列中有消息存入时,唤醒Natvice Looper,至于如何发送向线程消息,这就用到了Handler;
2. 当消息队列中没有消息时或者消息尚未到处理时间时,Natvice Looper block住整个线程。
也就是说:创建了JAVA Looper的线程只有在有消息待处理时才处于活跃状态,无消息时block在等待消息写入的状态。Looper相关的内容可以参考 Android消息处理机制(Handler、Looper、MessageQueue与Message)在以上客户端(ViewRoot)注册的时候,其实没有使用Handler向java的消息队列中push消息,而只是复用了native Looper。具体的过程如下:
UI主线程运行在Looper.loop();
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycle();
}
}
Message next() {
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(mPtr, nextPollTimeoutMillis);
synchronized (this) {
......
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (false) Log.v("MessageQueue", "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
......
}
}
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jclass clazz,
jint ptr, jint timeoutMillis) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast(ptr);
nativeMessageQueue->pollOnce(env, timeoutMillis);
}
void NativeMessageQueue::pollOnce(JNIEnv* env, int timeoutMillis) {
mInCallback = true;
mLooper->pollOnce(timeoutMillis);
mInCallback = false;
if (mExceptionObj) {
env->Throw(mExceptionObj);
env->DeleteLocalRef(mExceptionObj);
mExceptionObj = NULL;
}
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
int result = 0;
for (;;) {
while (mResponseIndex < mResponses.size()) {
const Response& response = mResponses.itemAt(mResponseIndex++);
int ident = response.request.ident;
if (ident >= 0) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - returning signalled identifier %d: "
"fd=%d, events=0x%x, data=%p",
this, ident, fd, events, data);
#endif
if (outFd != NULL) *outFd = fd;
if (outEvents != NULL) *outEvents = events;
if (outData != NULL) *outData = data;
return ident;
}
}
if (result != 0) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - returning result %d", this, result);
#endif
if (outFd != NULL) *outFd = 0;
if (outEvents != NULL) *outEvents = 0;
if (outData != NULL) *outData = NULL;
return result;
}
result = pollInner(timeoutMillis);
}
int Looper::pollInner(int timeoutMillis) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - waiting: timeoutMillis=%d", this, timeoutMillis);
#endif
// Adjust the timeout based on when the next message is due.
if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
if (messageTimeoutMillis >= 0
&& (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
timeoutMillis = messageTimeoutMillis;
}
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - next message in %lldns, adjusted timeout: timeoutMillis=%d",
this, mNextMessageUptime - now, timeoutMillis);
#endif
}
// Poll.
int result = ALOOPER_POLL_WAKE;
mResponses.clear();
mResponseIndex = 0;
// We are about to idle.
mIdling = true;
struct epoll_event eventItems[EPOLL_MAX_EVENTS];
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
// No longer idling.
mIdling = false;
// Acquire lock.
mLock.lock();
// Check for poll error.
if (eventCount < 0) {
if (errno == EINTR) {
goto Done;
}
ALOGW("Poll failed with an unexpected error, errno=%d", errno);
result = ALOOPER_POLL_ERROR;
goto Done;
}
// Check for poll timeout.
if (eventCount == 0) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - timeout", this);
#endif
result = ALOOPER_POLL_TIMEOUT;
goto Done;
}
// Handle all events.
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount);
#endif
for (int i = 0; i < eventCount; i++) {
int fd = eventItems[i].data.fd;
uint32_t epollEvents = eventItems[i].events;
if (fd == mWakeReadPipeFd) {
if (epollEvents & EPOLLIN) {
awoken();
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on wake read pipe.", epollEvents);
}
} else {
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex >= 0) {
int events = 0;
if (epollEvents & EPOLLIN) events |= ALOOPER_EVENT_INPUT;
if (epollEvents & EPOLLOUT) events |= ALOOPER_EVENT_OUTPUT;
if (epollEvents & EPOLLERR) events |= ALOOPER_EVENT_ERROR;
if (epollEvents & EPOLLHUP) events |= ALOOPER_EVENT_HANGUP;
pushResponse(events, mRequests.valueAt(requestIndex));
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
"no longer registered.", epollEvents, fd);
}
}
}
Done: ;
// Invoke pending message callbacks.
mNextMessageUptime = LLONG_MAX;
while (mMessageEnvelopes.size() != 0) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
if (messageEnvelope.uptime <= now) {
// Remove the envelope from the list.
// We keep a strong reference to the handler until the call to handleMessage
// finishes. Then we drop it so that the handler can be deleted *before*
// we reacquire our lock.
{ // obtain handler
sp handler = messageEnvelope.handler;
Message message = messageEnvelope.message;
mMessageEnvelopes.removeAt(0);
mSendingMessage = true;
mLock.unlock();
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
this, handler.get(), message.what);
#endif
handler->handleMessage(message);
} // release handler
mLock.lock();
mSendingMessage = false;
result = ALOOPER_POLL_CALLBACK;
} else {
// The last message left at the head of the queue determines the next wakeup time.
mNextMessageUptime = messageEnvelope.uptime;
break;
}
}
// Release lock.
mLock.unlock();
// Invoke all response callbacks.
for (size_t i = 0; i < mResponses.size(); i++) {
Response& response = mResponses.editItemAt(i);
if (response.request.ident == ALOOPER_POLL_CALLBACK) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
this, response.request.callback.get(), fd, events, data);
#endif
int callbackResult = response.request.callback->handleEvent(fd, events, data);
if (callbackResult == 0) {
removeFd(fd);
}
// Clear the callback reference in the response structure promptly because we
// will not clear the response vector itself until the next poll.
response.request.callback.clear();
result = ALOOPER_POLL_CALLBACK;
}
}
return result;
}
这里的int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);就是等待文件描述符指向的文件的内容发生变化。
这些文件描述符是通过Looper.addFd添加进去的。如果制定了回调函数,这样当这个文件描述符所指向的文件有新的内容可读时,Looper就会调用这个回调函数。
这里再介绍一下Looper.addFd。
int Looper::addFd(int fd, int ident, int events, ALooper_callbackFunc callback, void* data) {
return addFd(fd, ident, events, callback ? new SimpleLooperCallback(callback) : NULL, data);
}
创建SimpleLooperCallback时,会把这个函数指针赋值给它的成员mCallback,这个类有一个成员函数handleEvent,调用handleEvent就相当于调用注册进来的CallBack。
最后都是通过以下形式把对象作为参数传递给addFd的。WMS注册Channel的场景传递的是CallBack是函数指针,所以需要new一个SimpleLooperCallback.
应用程序进程注册Channel的场景直接传递的就是继承了LooperCallback的NativeInputEventReceiver对象,它实现了handleEvent方法。
int Looper::addFd(int fd, int ident, int events, const sp& callback, void* data) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ addFd - fd=%d, ident=%d, events=0x%x, callback=%p, data=%p", this, fd, ident,
events, callback.get(), data);
#endif
if (!callback.get()) {
if (! mAllowNonCallbacks) {
ALOGE("Invalid attempt to set NULL callback but not allowed for this looper.");
return -1;
}
if (ident < 0) {
ALOGE("Invalid attempt to set NULL callback with ident < 0.");
return -1;
}
} else {
ident = ALOOPER_POLL_CALLBACK;
}
int epollEvents = 0;
if (events & ALOOPER_EVENT_INPUT) epollEvents |= EPOLLIN;
if (events & ALOOPER_EVENT_OUTPUT) epollEvents |= EPOLLOUT;
{ // acquire lock
AutoMutex _l(mLock);
Request request;
request.fd = fd;
request.ident = ident;
request.callback = callback;
request.data = data;
struct epoll_event eventItem;
memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
eventItem.events = epollEvents;
eventItem.data.fd = fd;
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex < 0) {
int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);
if (epollResult < 0) {
ALOGE("Error adding epoll events for fd %d, errno=%d", fd, errno);
return -1;
}
mRequests.add(fd, request);
} else {
int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_MOD, fd, & eventItem);
if (epollResult < 0) {
ALOGE("Error modifying epoll events for fd %d, errno=%d", fd, errno);
return -1;
}
mRequests.replaceValueAt(requestIndex, request);
}
} // release lock
return 1;
}
在 Looper::pollInner函数中,当有文件描述符指向的文件发生变化时,也就是说,从epoll_wait时,最终会调用response.request.callback->handleEvent(fd, events, data);
对于WMS注册Channel的场景,就会调用之前addFd中的callback,即InputDispatcher::handleReceiveCallback方法。
对于应用程序注册Channel的场景,就会调用NativeInputEventReceiver::handleEvent方法。
关于这两个方法的实现,之后再做介绍。
下一步,先分析Input子系统的事件处理过程。
在Input子系统的初始化过程,启动了两个线程InputReaderThread和InputDispatcherThread,并进入到它们的线程执行函数threadLoop中。当没有事件发生时,InputReader等待底层的事件输入,InputDispatcher等待InputReder的通知,都在睡眠。一旦有事件产生,整个过程就动起来了。下面我们分析这个过程。
分几个部分介绍:
1. InputReader处理
2. InputDispatcher处理
先看线程的处理函数
bool InputReaderThread::threadLoop() {
mReader->loopOnce();
return true;
}
void InputReader::loopOnce() {
int32_t oldGeneration;
int32_t timeoutMillis;
bool inputDevicesChanged = false;
Vector inputDevices;
{ // acquire lock
AutoMutex _l(mLock);
oldGeneration = mGeneration;
timeoutMillis = -1;
uint32_t changes = mConfigurationChangesToRefresh;
if (changes) {
mConfigurationChangesToRefresh = 0;
timeoutMillis = 0;
refreshConfigurationLocked(changes);
} else if (mNextTimeout != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
}
} // release lock
size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
{ // acquire lock
AutoMutex _l(mLock);
mReaderIsAliveCondition.broadcast();
if (count) {
processEventsLocked(mEventBuffer, count);
}
if (mNextTimeout != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
if (now >= mNextTimeout) {
#if DEBUG_RAW_EVENTS
ALOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);
#endif
mNextTimeout = LLONG_MAX;
timeoutExpiredLocked(now);
}
}
if (oldGeneration != mGeneration) {
inputDevicesChanged = true;
getInputDevicesLocked(inputDevices);
}
} // release lock
// Send out a message that the describes the changed input devices.
if (inputDevicesChanged) {
mPolicy->notifyInputDevicesChanged(inputDevices);
}
// Flush queued events out to the listener.
// This must happen outside of the lock because the listener could potentially call
// back into the InputReader's methods, such as getScanCodeState, or become blocked
// on another thread similarly waiting to acquire the InputReader lock thereby
// resulting in a deadlock. This situation is actually quite plausible because the
// listener is actually the input dispatcher, which calls into the window manager,
// which occasionally calls into the input reader.
mQueuedListener->flush();
}
void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) {
for (const RawEvent* rawEvent = rawEvents; count;) {
int32_t type = rawEvent->type;
size_t batchSize = 1;
if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
int32_t deviceId = rawEvent->deviceId;
while (batchSize < count) {
if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT
|| rawEvent[batchSize].deviceId != deviceId) {
break;
}
batchSize += 1;
}
#if DEBUG_RAW_EVENTS
ALOGD("BatchSize: %d Count: %d", batchSize, count);
#endif
processEventsForDeviceLocked(deviceId, rawEvent, batchSize);
} else {
switch (rawEvent->type) {
case EventHubInterface::DEVICE_ADDED:
addDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
case EventHubInterface::DEVICE_REMOVED:
removeDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
case EventHubInterface::FINISHED_DEVICE_SCAN:
handleConfigurationChangedLocked(rawEvent->when);
break;
default:
ALOG_ASSERT(false); // can't happen
break;
}
}
count -= batchSize;
rawEvent += batchSize;
}
}
2.当所有的设备均被打开之后,InputReader去向EventHub获取事件时,EventHub回去轮询event节点,如果有事件,则会调用processEventsForDeviceLocked进行下一步的处理。
void InputReader::processEventsForDeviceLocked(int32_t deviceId,
const RawEvent* rawEvents, size_t count) {
ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
if (deviceIndex < 0) {
ALOGW("Discarding event for unknown deviceId %d.", deviceId);
return;
}
InputDevice* device = mDevices.valueAt(deviceIndex);
if (device->isIgnored()) {
//ALOGD("Discarding event for ignored deviceId %d.", deviceId);
return;
}
device->process(rawEvents, count);
}
void InputDevice::process(const RawEvent* rawEvents, size_t count) {
// Process all of the events in order for each mapper.
// We cannot simply ask each mapper to process them in bulk because mappers may
// have side-effects that must be interleaved. For example, joystick movement events and
// gamepad button presses are handled by different mappers but they should be dispatched
// in the order received.
size_t numMappers = mMappers.size();
for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) {
#if DEBUG_RAW_EVENTS
ALOGD("Input event: device=%d type=0x%04x code=0x%04x value=0x%08x when=%lld",
rawEvent->deviceId, rawEvent->type, rawEvent->code, rawEvent->value,
rawEvent->when);
#endif
if (mDropUntilNextSync) {
if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
mDropUntilNextSync = false;
#if DEBUG_RAW_EVENTS
ALOGD("Recovered from input event buffer overrun.");
#endif
} else {
#if DEBUG_RAW_EVENTS
ALOGD("Dropped input event while waiting for next input sync.");
#endif
}
} else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) {
ALOGI("Detected input event buffer overrun for device %s.", getName().string());
mDropUntilNextSync = true;
reset(rawEvent->when);
} else {
for (size_t i = 0; i < numMappers; i++) {
InputMapper* mapper = mMappers[i];
mapper->process(rawEvent);
}
}
}
}
这些mapper是什么时候创建并添加到数组中的?主要是在DEVICE_ADDED时添加进去的。调用过程大致如下:
InputReader.cpp
processEventsLocked
-》addDeviceLocked
-》createDeviceLocked
-》 device = new InputDevice
device->addMapper
具体过程不做细致的分析了,总之,InputReader维护了mDevices和mMappers,到有事件发生时,InputReader会遍历所有的mapper,并调用对应的process方法。
本文主要讲解hard key(比如power,home,back,menu, volume up down等),对应的mapper是KeyboardInputMapper。所以事件到来时,会调用KeyboardInputMapper的process方法。
void KeyboardInputMapper::process(const RawEvent* rawEvent) {
switch (rawEvent->type) {
case EV_KEY: {
int32_t scanCode = rawEvent->code;
int32_t usageCode = mCurrentHidUsage;
mCurrentHidUsage = 0;
if (isKeyboardOrGamepadKey(scanCode)) {
int32_t keyCode;
uint32_t flags;
if (getEventHub()->mapKey(getDeviceId(), scanCode, usageCode, &keyCode, &flags)) {
keyCode = AKEYCODE_UNKNOWN;
flags = 0;
}
processKey(rawEvent->when, rawEvent->value != 0, keyCode, scanCode, flags);
}
break;
}
case EV_MSC: {
if (rawEvent->code == MSC_SCAN) {
mCurrentHidUsage = rawEvent->value;
}
break;
}
case EV_SYN: {
if (rawEvent->code == SYN_REPORT) {
mCurrentHidUsage = 0;
}
}
}
void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
int32_t scanCode, uint32_t policyFlags) {
if (down) {
// Rotate key codes according to orientation if needed.
if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) {
keyCode = rotateKeyCode(keyCode, mOrientation);
}
// Add key down.
ssize_t keyDownIndex = findKeyDown(scanCode);
if (keyDownIndex >= 0) {
// key repeat, be sure to use same keycode as before in case of rotation
keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode;
} else {
// key down
if ((policyFlags & POLICY_FLAG_VIRTUAL)
&& mContext->shouldDropVirtualKey(when,
getDevice(), keyCode, scanCode)) {
return;
}
mKeyDowns.push();
KeyDown& keyDown = mKeyDowns.editTop();
keyDown.keyCode = keyCode;
keyDown.scanCode = scanCode;
}
mDownTime = when;
} else {
// Remove key down.
ssize_t keyDownIndex = findKeyDown(scanCode);
if (keyDownIndex >= 0) {
// key up, be sure to use same keycode as before in case of rotation
keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode;
mKeyDowns.removeAt(size_t(keyDownIndex));
} else {
// key was not actually down
ALOGI("Dropping key up from device %s because the key was not down. "
"keyCode=%d, scanCode=%d",
getDeviceName().string(), keyCode, scanCode);
return;
}
}
int32_t oldMetaState = mMetaState;
int32_t newMetaState = updateMetaState(keyCode, down, oldMetaState);
bool metaStateChanged = oldMetaState != newMetaState;
if (metaStateChanged) {
mMetaState = newMetaState;
updateLedState(false);
}
nsecs_t downTime = mDownTime;
// Key down on external an keyboard should wake the device.
// We don't do this for internal keyboards to prevent them from waking up in your pocket.
// For internal keyboards, the key layout file should specify the policy flags for
// each wake key individually.
// TODO: Use the input device configuration to control this behavior more finely.
if (down && getDevice()->isExternal()
&& !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) {
policyFlags |= POLICY_FLAG_WAKE_DROPPED;
}
if (metaStateChanged) {
getContext()->updateGlobalMetaState();
}
if (down && !isMetaKey(keyCode)) {
getContext()->fadePointer();
}
NotifyKeyArgs args(when, getDeviceId(), mSource, policyFlags,
down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
getListener()->notifyKey(&args);
}
最后,调用getListener()->notifyKey通知InputDispatcher,有key事件发生了。
getListener()->notifyKey如何通知InputDispatcher?下面分析这一过程。
InputManager在构造的时候会创建InputReader。
mReader = new InputReader(eventHub, readerPolicy, mDispatcher);
mQueuedListener = new QueuedInputListener(listener);
mQueuedListener有一个成员mInnerListener指向dispatcher。
再来看一下NotifyArgs,它用来描述输入事件,根据不同的输入事件类型,也存在几个派生的NotifyArgs,比如NotifyKeyArgs,NotifyMotionArgs,NotifySwitchArgs等等,这里使用的是NotifyKeyArgs。
再来看一下getListener的实现。
InputListenerInterface* InputReader::ContextImpl::getListener() {
return mReader->mQueuedListener.get();
}
由于mQueuedListener是sp,所以使用了get方法,这里不做介绍了,作用就是取得QueuedInputListener实例。
接着调用QueuedInputListener的notifyKey,传入的参数是创建的NotifyKeyArgs的地址。
void QueuedInputListener::notifyKey(const NotifyKeyArgs* args) {
mArgsQueue.push(new NotifyKeyArgs(*args));
}
这里重新构造了一个NotifyKeyArgs,并push到QueuedInputListener的成员mArgsQueue向量里。
这个过程执行完之后,返回到InputReader::loopOnce的最后一条语句mQueuedListener->flush();
void InputReader::loopOnce() {
int32_t oldGeneration;
int32_t timeoutMillis;
bool inputDevicesChanged = false;
Vector inputDevices;
{ // acquire lock
AutoMutex _l(mLock);
oldGeneration = mGeneration;
timeoutMillis = -1;
uint32_t changes = mConfigurationChangesToRefresh;
if (changes) {
mConfigurationChangesToRefresh = 0;
timeoutMillis = 0;
refreshConfigurationLocked(changes);
} else if (mNextTimeout != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
}
} // release lock
size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
{ // acquire lock
AutoMutex _l(mLock);
mReaderIsAliveCondition.broadcast();
if (count) {
processEventsLocked(mEventBuffer, count);
}
......
// Flush queued events out to the listener.
// This must happen outside of the lock because the listener could potentially call
// back into the InputReader's methods, such as getScanCodeState, or become blocked
// on another thread similarly waiting to acquire the InputReader lock thereby
// resulting in a deadlock. This situation is actually quite plausible because the
// listener is actually the input dispatcher, which calls into the window manager,
// which occasionally calls into the input reader.
mQueuedListener->flush();
}
void QueuedInputListener::flush() {
size_t count = mArgsQueue.size();
for (size_t i = 0; i < count; i++) {
NotifyArgs* args = mArgsQueue[i];
args->notify(mInnerListener);
delete args;
}
mArgsQueue.clear();
}
这里有个循环,用来取得
QueuedInputListener的mArgsQueue里的事件描述参数(这时之前push的),然后逐个调用NotifyArgs各个派生对象的notify方法。注意这里的参数是mInnerListener,其实指向dispatcher。
Key Event会调用NotifyKeyArgs::notify
void NotifyKeyArgs::notify(const sp& listener) const {
listener->notifyKey(this);
}
这里就会调用InputDispatcher的notifykey,参数是NotifyKeyArgs。
这样就把事件通知给了dispathcer。
下一步分析dispatcher的处理流程。
void InputDispatcher::notifyKey(const NotifyKeyArgs* args) {
#if DEBUG_INBOUND_EVENT_DETAILS
ALOGD("notifyKey - eventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, action=0x%x, "
"flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld",
args->eventTime, args->deviceId, args->source, args->policyFlags,
args->action, args->flags, args->keyCode, args->scanCode,
args->metaState, args->downTime);
#endif
if (!validateKeyEvent(args->action)) {
return;
}
uint32_t policyFlags = args->policyFlags;
int32_t flags = args->flags;
int32_t metaState = args->metaState;
if ((policyFlags & POLICY_FLAG_VIRTUAL) || (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)) {
policyFlags |= POLICY_FLAG_VIRTUAL;
flags |= AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
}
if (policyFlags & POLICY_FLAG_ALT) {
metaState |= AMETA_ALT_ON | AMETA_ALT_LEFT_ON;
}
if (policyFlags & POLICY_FLAG_ALT_GR) {
metaState |= AMETA_ALT_ON | AMETA_ALT_RIGHT_ON;
}
if (policyFlags & POLICY_FLAG_SHIFT) {
metaState |= AMETA_SHIFT_ON | AMETA_SHIFT_LEFT_ON;
}
if (policyFlags & POLICY_FLAG_CAPS_LOCK) {
metaState |= AMETA_CAPS_LOCK_ON;
}
if (policyFlags & POLICY_FLAG_FUNCTION) {
metaState |= AMETA_FUNCTION_ON;
}
policyFlags |= POLICY_FLAG_TRUSTED;
KeyEvent event;
event.initialize(args->deviceId, args->source, args->action,
flags, args->keyCode, args->scanCode, metaState, 0,
args->downTime, args->eventTime);
mPolicy->interceptKeyBeforeQueueing(&event, /*byref*/ policyFlags);
if (policyFlags & POLICY_FLAG_WOKE_HERE) {
flags |= AKEY_EVENT_FLAG_WOKE_HERE;
}
bool needWake;
{ // acquire lock
mLock.lock();
if (shouldSendKeyToInputFilterLocked(args)) {
mLock.unlock();
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy->filterInputEvent(&event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
int32_t repeatCount = 0;
KeyEntry* newEntry = new KeyEntry(args->eventTime,
args->deviceId, args->source, policyFlags,
args->action, flags, args->keyCode, args->scanCode,
metaState, repeatCount, args->downTime);
needWake = enqueueInboundEventLocked(newEntry);
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
另外,InputDispatcher会截取这个按键事件,根据当前设备的状况来优先消化这个事件,这个过程当然是在将事件dispatch给ViewRoot之前。最终该过程交由interceptKeyBeforeQueueing()@PhoneWindowManager.java来处理。interceptKeyBeforeQueueing()主要是对一些特殊案件的特殊处理,并判断该按键是够应该传递给ViewRoot。通过设置标志位policyFlags的值来判断是否给ViewRoot,例如policyFlags&POLICY_FLAG_PASS_TO_USER == 1 则应该传递给ViewRoot。
void NativeInputManager::interceptKeyBeforeQueueing(const KeyEvent* keyEvent,
uint32_t& policyFlags) {
// Policy:
// - Ignore untrusted events and pass them along.
// - Ask the window manager what to do with normal events and trusted injected events.
// - For normal events wake and brighten the screen if currently off or dim.
if ((policyFlags & POLICY_FLAG_TRUSTED)) {
nsecs_t when = keyEvent->getEventTime();
bool isScreenOn = this->isScreenOn();
bool isScreenBright = this->isScreenBright();
JNIEnv* env = jniEnv();
jobject keyEventObj = android_view_KeyEvent_fromNative(env, keyEvent);
jint wmActions;
if (keyEventObj) {
wmActions = env->CallIntMethod(mServiceObj,
gServiceClassInfo.interceptKeyBeforeQueueing,
keyEventObj, policyFlags, isScreenOn);
if (checkAndClearExceptionFromCallback(env, "interceptKeyBeforeQueueing")) {
wmActions = 0;
}
android_view_KeyEvent_recycle(env, keyEventObj);
env->DeleteLocalRef(keyEventObj);
} else {
ALOGE("Failed to obtain key event object for interceptKeyBeforeQueueing.");
wmActions = 0;
}
if (!(policyFlags & POLICY_FLAG_INJECTED)) {
if (!isScreenOn) {
policyFlags |= POLICY_FLAG_WOKE_HERE;
}
if (!isScreenBright) {
policyFlags |= POLICY_FLAG_BRIGHT_HERE;
}
}
handleInterceptActions(wmActions, when, /*byref*/ policyFlags);
} else {
policyFlags |= POLICY_FLAG_PASS_TO_USER;
}
}
主要处理是如下代码:
wmActions = env->CallIntMethod(mServiceObj,
gServiceClassInfo.interceptKeyBeforeQueueing,
keyEventObj, policyFlags, isScreenOn);
这里的mServiceObj实际上是InputManagerService。调用如下方法。
private int interceptKeyBeforeQueueing(KeyEvent event, int policyFlags, boolean isScreenOn) {
return mWindowManagerCallbacks.interceptKeyBeforeQueueing(
event, policyFlags, isScreenOn);
}
inputManager.setWindowManagerCallbacks(wm.getInputMonitor());
inputManager.start()
所以i接着执行InputMonitor的nterceptKeyBeforeQueueing方法
public int interceptKeyBeforeQueueing(
KeyEvent event, int policyFlags, boolean isScreenOn) {
return mService.mPolicy.interceptKeyBeforeQueueing(event, policyFlags, isScreenOn);
}
这里的mService就是WindowManagerService,mPolicy就是PhoneWindowManager。
if (shouldSendKeyToInputFilterLocked(args)) {
mLock.unlock();
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy->filterInputEvent(&event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
KeyEntry* newEntry = new KeyEntry(args->eventTime,
args->deviceId, args->source, policyFlags,
args->action, flags, args->keyCode, args->scanCode,
metaState, repeatCount, args->downTime);
needWake = enqueueInboundEventLocked(newEntry);
bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) {
bool needWake = mInboundQueue.isEmpty();
mInboundQueue.enqueueAtTail(entry);
traceInboundQueueLengthLocked();
switch (entry->type) {
case EventEntry::TYPE_KEY: {
// Optimize app switch latency.
// If the application takes too long to catch up then we drop all events preceding
// the app switch key.
KeyEntry* keyEntry = static_cast(entry);
if (isAppSwitchKeyEventLocked(keyEntry)) {
if (keyEntry->action == AKEY_EVENT_ACTION_DOWN) {
mAppSwitchSawKeyDown = true;
} else if (keyEntry->action == AKEY_EVENT_ACTION_UP) {
if (mAppSwitchSawKeyDown) {
#if DEBUG_APP_SWITCH
ALOGD("App switch is pending!");
#endif
mAppSwitchDueTime = keyEntry->eventTime + APP_SWITCH_TIMEOUT;
mAppSwitchSawKeyDown = false;
needWake = true;
}
}
}
break;
}
case EventEntry::TYPE_MOTION: {
// Optimize case where the current application is unresponsive and the user
// decides to touch a window in a different application.
// If the application takes too long to catch up then we drop all events preceding
// the touch into the other window.
MotionEntry* motionEntry = static_cast(entry);
if (motionEntry->action == AMOTION_EVENT_ACTION_DOWN
&& (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER)
&& mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY
&& mInputTargetWaitApplicationHandle != NULL) {
int32_t displayId = motionEntry->displayId;
int32_t x = int32_t(motionEntry->pointerCoords[0].
getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = int32_t(motionEntry->pointerCoords[0].
getAxisValue(AMOTION_EVENT_AXIS_Y));
sp touchedWindowHandle = findTouchedWindowAtLocked(displayId, x, y);
if (touchedWindowHandle != NULL
&& touchedWindowHandle->inputApplicationHandle
!= mInputTargetWaitApplicationHandle) {
// User touched a different application than the one we are waiting on.
// Flag the event, and start pruning the input queue.
mNextUnblockedEvent = motionEntry;
needWake = true;
}
}
break;
}
}
return needWake;
if (needWake) {
mLooper->wake();
}
其实,就是想管道中写入一个W。
void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ wake", this);
#endif
ssize_t nWrite;
do {
nWrite = write(mWakeWritePipeFd, "W", 1);
} while (nWrite == -1 && errno == EINTR);
if (nWrite != 1) {
if (errno != EAGAIN) {
ALOGW("Could not write wake signal, errno=%d", errno);
}
}
}
bool InputDispatcherThread::threadLoop() {
mDispatcher->dispatchOnce();
return true;
}
void InputDispatcher::dispatchOnce() {
nsecs_t nextWakeupTime = LONG_LONG_MAX;
{ // acquire lock
AutoMutex _l(mLock);
mDispatcherIsAliveCondition.broadcast();
// Run a dispatch loop if there are no pending commands.
// The dispatch loop might enqueue commands to run afterwards.
if (!haveCommandsLocked()) {
dispatchOnceInnerLocked(&nextWakeupTime);
}
// Run all pending commands if there are any.
// If any commands were run then force the next poll to wake up immediately.
if (runCommandsLockedInterruptible()) {
nextWakeupTime = LONG_LONG_MIN;
}
} // release lock
// Wait for callback or timeout or wake. (make sure we round up, not down)
nsecs_t currentTime = now();
int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime);
mLooper->pollOnce(timeoutMillis);
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
nsecs_t currentTime = now();
// Reset the key repeat timer whenever we disallow key events, even if the next event
// is not a key. This is to ensure that we abort a key repeat if the device is just coming
// out of sleep.
if (!mPolicy->isKeyRepeatEnabled()) {
resetKeyRepeatLocked();
}
// If dispatching is frozen, do not process timeouts or try to deliver any new events.
if (mDispatchFrozen) {
#if DEBUG_FOCUS
ALOGD("Dispatch frozen. Waiting some more.");
#endif
return;
}
// Optimize latency of app switches.
// Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
// been pressed. When it expires, we preempt dispatch and drop all other pending events.
bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
if (mAppSwitchDueTime < *nextWakeupTime) {
*nextWakeupTime = mAppSwitchDueTime;
}
// Ready to start a new event.
// If we don't already have a pending event, go grab one.
if (! mPendingEvent) {
if (mInboundQueue.isEmpty()) {
if (isAppSwitchDue) {
// The inbound queue is empty so the app switch key we were waiting
// for will never arrive. Stop waiting for it.
resetPendingAppSwitchLocked(false);
isAppSwitchDue = false;
}
// Synthesize a key repeat if appropriate.
if (mKeyRepeatState.lastKeyEntry) {
if (currentTime >= mKeyRepeatState.nextRepeatTime) {
mPendingEvent = synthesizeKeyRepeatLocked(currentTime);
} else {
if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
*nextWakeupTime = mKeyRepeatState.nextRepeatTime;
}
}
}
// Nothing to do if there is no pending event.
if (!mPendingEvent) {
return;
}
} else {
// Inbound queue has at least one entry.
mPendingEvent = mInboundQueue.dequeueAtHead();
traceInboundQueueLengthLocked();
}
// Poke user activity for this event.
if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) {
pokeUserActivityLocked(mPendingEvent);
}
// Get ready to dispatch the event.
resetANRTimeoutsLocked();
}
// Now we have an event to dispatch.
// All events are eventually dequeued and processed this way, even if we intend to drop them.
ALOG_ASSERT(mPendingEvent != NULL);
bool done = false;
DropReason dropReason = DROP_REASON_NOT_DROPPED;
if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) {
dropReason = DROP_REASON_POLICY;
} else if (!mDispatchEnabled) {
dropReason = DROP_REASON_DISABLED;
}
if (mNextUnblockedEvent == mPendingEvent) {
mNextUnblockedEvent = NULL;
}
switch (mPendingEvent->type) {
case EventEntry::TYPE_CONFIGURATION_CHANGED: {
......
break;
}
case EventEntry::TYPE_DEVICE_RESET: {
......
break;
}
case EventEntry::TYPE_KEY: {
KeyEntry* typedEntry = static_cast(mPendingEvent);
if (isAppSwitchDue) {
if (isAppSwitchKeyEventLocked(typedEntry)) {
resetPendingAppSwitchLocked(true);
isAppSwitchDue = false;
} else if (dropReason == DROP_REASON_NOT_DROPPED) {
dropReason = DROP_REASON_APP_SWITCH;
}
}
if (dropReason == DROP_REASON_NOT_DROPPED
&& isStaleEventLocked(currentTime, typedEntry)) {
dropReason = DROP_REASON_STALE;
}
if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DROP_REASON_BLOCKED;
}
done = dispatchKeyLocked(currentTime, typedEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::TYPE_MOTION: {
......
default:
ALOG_ASSERT(false);
break;
}
if (done) {
if (dropReason != DROP_REASON_NOT_DROPPED) {
dropInboundEventLocked(mPendingEvent, dropReason);
}
releasePendingEventLocked();
*nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
}
enum DropReason {
DROP_REASON_NOT_DROPPED = 0,
DROP_REASON_POLICY = 1,
DROP_REASON_APP_SWITCH = 2,
DROP_REASON_DISABLED = 3,
DROP_REASON_BLOCKED = 4,
DROP_REASON_STALE = 5,
};
1. DROP_REASON_NOT_DROPPED
不需要丢弃
2. DROP_REASON_POLICY
设置为DROP_REASON_POLICY主要有两种情形:
A. 在InputReader notify InputDispatcher之前,Policy会判断不需要传递给应用的事件。
B. 在InputDispatcher dispatch事件前,PhoneWindowManager使用方法interceptKeyBeforeDispatching()提前consume掉一些按键事件。
interceptKeyBeforeDispatching()主要对HOME/MENU/SEARCH按键的特殊处理,如果此时能被consume掉,那么在InputDispatcher 中将被丢弃。
3.DROP_REASON_APP_SWITCH
当有App switch 按键如HOME/ENDCALL按键发生时,当InputReader向InputDispatcher 传递app switch按键时,会设置一个APP_SWITCH_TIMEOUT 0.5S的超时时间,当0.5s超时时,InputDispatcher 尚未dispatch到这个app switch按键时,InputDispatcher 将会丢弃掉mInboundQueue中所有处在app switch按键前的按键事件。这么做的目的是保证app switch按键能够确保被处理。此时被丢弃掉的按键会被置为DROP_REASON_APP_SWITCH。
4. DROP_REASON_DISABLED
这个标志表示当前的InputDispatcher 被disable掉了,不能dispatch任何事件,比如当系统休眠时或者正在关机时会用到。
5. DROP_REASON_BLOCKED
如果事件传递后,已经进入了另外的应用,就把以前的事件丢弃。
6.DROP_REASON_STALE
设置的超时是10秒。如果超过了10秒,事件没有处理掉,那么就直接丢弃。
bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, KeyEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
// Preprocessing.
if (! entry->dispatchInProgress) {
if (entry->repeatCount == 0
&& entry->action == AKEY_EVENT_ACTION_DOWN
&& (entry->policyFlags & POLICY_FLAG_TRUSTED)
&& (!(entry->policyFlags & POLICY_FLAG_DISABLE_KEY_REPEAT))) {
if (mKeyRepeatState.lastKeyEntry
&& mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) {
// We have seen two identical key downs in a row which indicates that the device
// driver is automatically generating key repeats itself. We take note of the
// repeat here, but we disable our own next key repeat timer since it is clear that
// we will not need to synthesize key repeats ourselves.
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
} else {
// Not a repeat. Save key down state in case we do see a repeat later.
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = entry->eventTime + mConfig.keyRepeatTimeout;
}
mKeyRepeatState.lastKeyEntry = entry;
entry->refCount += 1;
} else if (! entry->syntheticRepeat) {
resetKeyRepeatLocked();
}
if (entry->repeatCount == 1) {
entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
} else {
entry->flags &= ~AKEY_EVENT_FLAG_LONG_PRESS;
}
entry->dispatchInProgress = true;
logOutboundKeyDetailsLocked("dispatchKey - ", entry);
}
// Handle case where the policy asked us to try again later last time.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER) {
if (currentTime < entry->interceptKeyWakeupTime) {
if (entry->interceptKeyWakeupTime < *nextWakeupTime) {
*nextWakeupTime = entry->interceptKeyWakeupTime;
}
return false; // wait until next wakeup
}
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
entry->interceptKeyWakeupTime = 0;
}
// Give the policy a chance to intercept the key.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible);
if (mFocusedWindowHandle != NULL) {
commandEntry->inputWindowHandle = mFocusedWindowHandle;
}
commandEntry->keyEntry = entry;
entry->refCount += 1;
return false; // wait for the command to run
} else {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
}
} else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) {
if (*dropReason == DROP_REASON_NOT_DROPPED) {
*dropReason = DROP_REASON_POLICY;
}
}
// Clean up if dropping the event.
if (*dropReason != DROP_REASON_NOT_DROPPED) {
setInjectionResultLocked(entry, *dropReason == DROP_REASON_POLICY
? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED);
return true;
}
// Identify targets.
Vector inputTargets;
int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime,
entry, inputTargets, nextWakeupTime);
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResultLocked(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
return true;
}
addMonitoringTargetsLocked(inputTargets);
// Dispatch the key.
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
这里面又涉及到一次拦截:
// Give the policy a chance to intercept the key.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible);
if (mFocusedWindowHandle != NULL) {
commandEntry->inputWindowHandle = mFocusedWindowHandle;
}
commandEntry->keyEntry = entry;
entry->refCount += 1;
return false; // wait for the command to run
这里是把事件加入到command队列mCommandQueue(其实这个command队列经常会用到,这里只是其中一个场景),当再次回到InputDispatcher::dispatchOnce时,会调用runCommandsLockedInterruptible来执行拦截的处理函数。同样这里的拦截最终是由interceptKeyBeforeDispatching@PhoneWindowManager执行的。这部分不再具体分析了。
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime,
EventEntry* eventEntry, const Vector& inputTargets) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("dispatchEventToCurrentInputTargets");
#endif
ALOG_ASSERT(eventEntry->dispatchInProgress); // should already have been set to true
pokeUserActivityLocked(eventEntry);
for (size_t i = 0; i < inputTargets.size(); i++) {
const InputTarget& inputTarget = inputTargets.itemAt(i);
ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);
if (connectionIndex >= 0) {
sp connection = mConnectionsByFd.valueAt(connectionIndex);
prepareDispatchCycleLocked(currentTime, connection, eventEntry, &inputTarget);
} else {
#if DEBUG_FOCUS
ALOGD("Dropping event delivery to target with channel '%s' because it "
"is no longer registered with the input dispatcher.",
inputTarget.inputChannel->getName().string());
#endif
}
}
}
pokeUserActivityLocked主要是电源管理相关的,这里不再详细介绍,主要处理函数prepareDispatchCycleLocked
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ prepareDispatchCycle - flags=0x%08x, "
"xOffset=%f, yOffset=%f, scaleFactor=%f, "
"pointerIds=0x%x",
connection->getInputChannelName(), inputTarget->flags,
inputTarget->xOffset, inputTarget->yOffset,
inputTarget->scaleFactor, inputTarget->pointerIds.value);
#endif
// Skip this event if the connection status is not normal.
// We don't want to enqueue additional outbound events if the connection is broken.
if (connection->status != Connection::STATUS_NORMAL) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Dropping event because the channel status is %s",
connection->getInputChannelName(), connection->getStatusLabel());
#endif
return;
}
// Split a motion event if needed.
if (inputTarget->flags & InputTarget::FLAG_SPLIT) {
ALOG_ASSERT(eventEntry->type == EventEntry::TYPE_MOTION);
MotionEntry* originalMotionEntry = static_cast(eventEntry);
if (inputTarget->pointerIds.count() != originalMotionEntry->pointerCount) {
MotionEntry* splitMotionEntry = splitMotionEvent(
originalMotionEntry, inputTarget->pointerIds);
if (!splitMotionEntry) {
return; // split event was dropped
}
#if DEBUG_FOCUS
ALOGD("channel '%s' ~ Split motion event.",
connection->getInputChannelName());
logOutboundMotionDetailsLocked(" ", splitMotionEntry);
#endif
enqueueDispatchEntriesLocked(currentTime, connection,
splitMotionEntry, inputTarget);
splitMotionEntry->release();
return;
}
}
// Not splitting. Enqueue dispatch entries for the event as is.
enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);
}
一般情况下会执行到enqueueDispatchEntriesLocked
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,
const sp& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {
bool wasEmpty = connection->outboundQueue.isEmpty();
// Enqueue dispatch entries for the requested modes.
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_IS);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.isEmpty()) {
startDispatchCycleLocked(currentTime, connection);
}
这里会记录之前的事件队列是否为空的标志(wasEmpty),并判断新的事件是否加入到事件队列中,当条件不成立时,说明当前这个Activity窗口正在处事件了,因此,就不需要调用startDispatchCycleLocked来启动Activity窗口来处理这个事件了,因为一旦这个Activity窗口正在处事件,它就会一直处理下去,直到它里的connection对象的outboundQueue为空为止。当connection中的outboundQueue事件队列为空时,就需要调用startDispatchCycleLocked来通知这个Activity窗口来执行事件处理的流程了。
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp& connection) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ startDispatchCycle",
connection->getInputChannelName());
#endif
while (connection->status == Connection::STATUS_NORMAL
&& !connection->outboundQueue.isEmpty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.head;
dispatchEntry->deliveryTime = currentTime;
// Publish the event.
status_t status;
EventEntry* eventEntry = dispatchEntry->eventEntry;
switch (eventEntry->type) {
case EventEntry::TYPE_KEY: {
KeyEntry* keyEntry = static_cast(eventEntry);
// Publish the key event.
status = connection->inputPublisher.publishKeyEvent(dispatchEntry->seq,
keyEntry->deviceId, keyEntry->source,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags,
keyEntry->keyCode, keyEntry->scanCode,
keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime,
keyEntry->eventTime);
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* motionEntry = static_cast(eventEntry);
PointerCoords scaledCoords[MAX_POINTERS];
const PointerCoords* usingCoords = motionEntry->pointerCoords;
// Set the X and Y offset depending on the input source.
float xOffset, yOffset, scaleFactor;
if ((motionEntry->source & AINPUT_SOURCE_CLASS_POINTER)
&& !(dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS)) {
scaleFactor = dispatchEntry->scaleFactor;
xOffset = dispatchEntry->xOffset * scaleFactor;
yOffset = dispatchEntry->yOffset * scaleFactor;
if (scaleFactor != 1.0f) {
for (size_t i = 0; i < motionEntry->pointerCount; i++) {
scaledCoords[i] = motionEntry->pointerCoords[i];
scaledCoords[i].scale(scaleFactor);
}
usingCoords = scaledCoords;
}
} else {
xOffset = 0.0f;
yOffset = 0.0f;
scaleFactor = 1.0f;
// We don't want the dispatch target to know.
if (dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS) {
for (size_t i = 0; i < motionEntry->pointerCount; i++) {
scaledCoords[i].clear();
}
usingCoords = scaledCoords;
}
}
// Publish the motion event.
status = connection->inputPublisher.publishMotionEvent(dispatchEntry->seq,
motionEntry->deviceId, motionEntry->source,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags,
motionEntry->edgeFlags, motionEntry->metaState, motionEntry->buttonState,
xOffset, yOffset,
motionEntry->xPrecision, motionEntry->yPrecision,
motionEntry->downTime, motionEntry->eventTime,
motionEntry->pointerCount, motionEntry->pointerProperties,
usingCoords);
break;
}
default:
ALOG_ASSERT(false);
return;
}
// Check the result.
if (status) {
if (status == WOULD_BLOCK) {
if (connection->waitQueue.isEmpty()) {
ALOGE("channel '%s' ~ Could not publish event because the pipe is full. "
"This is unexpected because the wait queue is empty, so the pipe "
"should be empty and we shouldn't have any problems writing an "
"event to it, status=%d", connection->getInputChannelName(), status);
abortBrokenDispatchCycleLocked(currentTime, connection, true /*notify*/);
} else {
// Pipe is full and we are waiting for the app to finish process some events
// before sending more events to it.
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Could not publish event because the pipe is full, "
"waiting for the application to catch up",
connection->getInputChannelName());
#endif
connection->inputPublisherBlocked = true;
}
} else {
ALOGE("channel '%s' ~ Could not publish event due to an unexpected error, "
"status=%d", connection->getInputChannelName(), status);
abortBrokenDispatchCycleLocked(currentTime, connection, true /*notify*/);
}
return;
}
// Re-enqueue the event on the wait queue.
connection->outboundQueue.dequeue(dispatchEntry);
traceOutboundQueueLengthLocked(connection);
connection->waitQueue.enqueueAtTail(dispatchEntry);
traceWaitQueueLengthLocked(connection);
}
}
status_t InputPublisher::publishKeyEvent(
uint32_t seq,
int32_t deviceId,
int32_t source,
int32_t action,
int32_t flags,
int32_t keyCode,
int32_t scanCode,
int32_t metaState,
int32_t repeatCount,
nsecs_t downTime,
nsecs_t eventTime) {
.......
InputMessage msg;
msg.header.type = InputMessage::TYPE_KEY;
msg.body.key.seq = seq;
msg.body.key.deviceId = deviceId;
msg.body.key.source = source;
msg.body.key.action = action;
msg.body.key.flags = flags;
msg.body.key.keyCode = keyCode;
msg.body.key.scanCode = scanCode;
msg.body.key.metaState = metaState;
msg.body.key.repeatCount = repeatCount;
msg.body.key.downTime = downTime;
msg.body.key.eventTime = eventTime;
return mChannel->sendMessage(&msg);
}
status_t InputChannel::sendMessage(const InputMessage* msg) {
size_t msgLength = msg->size();
ssize_t nWrite;
do {
nWrite = ::send(mFd, msg, msgLength, MSG_DONTWAIT | MSG_NOSIGNAL);
} while (nWrite == -1 && errno == EINTR);
if (nWrite < 0) {
int error = errno;
#if DEBUG_CHANNEL_MESSAGES
ALOGD("channel '%s' ~ error sending message of type %d, errno=%d", mName.string(),
msg->header.type, error);
#endif
if (error == EAGAIN || error == EWOULDBLOCK) {
return WOULD_BLOCK;
}
if (error == EPIPE || error == ENOTCONN || error == ECONNREFUSED || error == ECONNRESET) {
return DEAD_OBJECT;
}
return -error;
}
if (size_t(nWrite) != msgLength) {
#if DEBUG_CHANNEL_MESSAGES
ALOGD("channel '%s' ~ error sending message type %d, send was incomplete",
mName.string(), msg->header.type);
#endif
return DEAD_OBJECT;
}
#if DEBUG_CHANNEL_MESSAGES
ALOGD("channel '%s' ~ sent message of type %d", mName.string(), msg->header.type);
#endif
return OK;
int NativeInputEventReceiver::handleEvent(int receiveFd, int events, void* data) {
if (events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP)) {
#if DEBUG_DISPATCH_CYCLE
// This error typically occurs when the publisher has closed the input channel
// as part of removing a window or finishing an IME session, in which case
// the consumer will soon be disposed as well.
ALOGD("channel '%s' ~ Publisher closed input channel or an error occurred. "
"events=0x%x", getInputChannelName(), events);
#endif
return 0; // remove the callback
}
if (events & ALOOPER_EVENT_INPUT) {
JNIEnv* env = AndroidRuntime::getJNIEnv();
status_t status = consumeEvents(env, false /*consumeBatches*/, -1);
mMessageQueue->raiseAndClearException(env, "handleReceiveCallback");
return status == OK || status == NO_MEMORY ? 1 : 0;
}
if (events & ALOOPER_EVENT_OUTPUT) {
for (size_t i = 0; i < mFinishQueue.size(); i++) {
const Finish& finish = mFinishQueue.itemAt(i);
status_t status = mInputConsumer.sendFinishedSignal(finish.seq, finish.handled);
if (status) {
mFinishQueue.removeItemsAt(0, i);
if (status == WOULD_BLOCK) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Sent %u queued finish events; %u left.",
getInputChannelName(), i, mFinishQueue.size());
#endif
return 1; // keep the callback, try again later
}
ALOGW("Failed to send finished signal on channel '%s'. status=%d",
getInputChannelName(), status);
if (status != DEAD_OBJECT) {
JNIEnv* env = AndroidRuntime::getJNIEnv();
String8 message;
message.appendFormat("Failed to finish input event. status=%d", status);
jniThrowRuntimeException(env, message.string());
mMessageQueue->raiseAndClearException(env, "finishInputEvent");
}
return 0; // remove the callback
}
}
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Sent %u queued finish events; none left.",
getInputChannelName(), mFinishQueue.size());
#endif
mFinishQueue.clear();
setFdEvents(ALOOPER_EVENT_INPUT);
return 1;
}
ALOGW("channel '%s' ~ Received spurious callback for unhandled poll event. "
"events=0x%x", getInputChannelName(), events);
return 1;
}
对于输入事件的场景,主要处理是consumeEvents。
status_t NativeInputEventReceiver::consumeEvents(JNIEnv* env,
bool consumeBatches, nsecs_t frameTime) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Consuming input events, consumeBatches=%s, frameTime=%lld.",
getInputChannelName(), consumeBatches ? "true" : "false", frameTime);
#endif
if (consumeBatches) {
mBatchedInputEventPending = false;
}
ScopedLocalRef receiverObj(env, NULL);
bool skipCallbacks = false;
for (;;) {
uint32_t seq;
InputEvent* inputEvent;
status_t status = mInputConsumer.consume(&mInputEventFactory,
consumeBatches, frameTime, &seq, &inputEvent);
if (status) {
if (status == WOULD_BLOCK) {
if (!skipCallbacks && !mBatchedInputEventPending
&& mInputConsumer.hasPendingBatch()) {
// There is a pending batch. Come back later.
if (!receiverObj.get()) {
receiverObj.reset(jniGetReferent(env, mReceiverWeakGlobal));
if (!receiverObj.get()) {
ALOGW("channel '%s' ~ Receiver object was finalized "
"without being disposed.", getInputChannelName());
return DEAD_OBJECT;
}
}
mBatchedInputEventPending = true;
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Dispatching batched input event pending notification.",
getInputChannelName());
#endif
env->CallVoidMethod(receiverObj.get(),
gInputEventReceiverClassInfo.dispatchBatchedInputEventPending);
if (env->ExceptionCheck()) {
ALOGE("Exception dispatching batched input events.");
mBatchedInputEventPending = false; // try again later
}
}
return OK;
}
ALOGE("channel '%s' ~ Failed to consume input event. status=%d",
getInputChannelName(), status);
return status;
}
assert(inputEvent);
if (!skipCallbacks) {
if (!receiverObj.get()) {
receiverObj.reset(jniGetReferent(env, mReceiverWeakGlobal));
if (!receiverObj.get()) {
ALOGW("channel '%s' ~ Receiver object was finalized "
"without being disposed.", getInputChannelName());
return DEAD_OBJECT;
}
}
jobject inputEventObj;
switch (inputEvent->getType()) {
case AINPUT_EVENT_TYPE_KEY:
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Received key event.", getInputChannelName());
#endif
inputEventObj = android_view_KeyEvent_fromNative(env,
static_cast(inputEvent));
break;
case AINPUT_EVENT_TYPE_MOTION:
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Received motion event.", getInputChannelName());
#endif
inputEventObj = android_view_MotionEvent_obtainAsCopy(env,
static_cast(inputEvent));
break;
default:
assert(false); // InputConsumer should prevent this from ever happening
inputEventObj = NULL;
}
if (inputEventObj) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Dispatching input event.", getInputChannelName());
#endif
env->CallVoidMethod(receiverObj.get(),
gInputEventReceiverClassInfo.dispatchInputEvent, seq, inputEventObj);
if (env->ExceptionCheck()) {
ALOGE("Exception dispatching input event.");
skipCallbacks = true;
}
env->DeleteLocalRef(inputEventObj);
} else {
ALOGW("channel '%s' ~ Failed to obtain event object.", getInputChannelName());
skipCallbacks = true;
}
}
if (skipCallbacks) {
mInputConsumer.sendFinishedSignal(seq, false);
}
}
}
这里处理大体分3处:
status_t status = mInputConsumer.consume(&mInputEventFactory,
consumeBatches, frameTime, &seq, &inputEvent);
这里调用最终mChannel->receiveMessage取得从channel另一端发送过来的事件。
case AINPUT_EVENT_TYPE_KEY:
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Received key event.", getInputChannelName());
#endif
inputEventObj = android_view_KeyEvent_fromNative(env,
static_cast(inputEvent));
break;
从native Event转换成java event
env->CallVoidMethod(receiverObj.get(),
gInputEventReceiverClassInfo.dispatchInputEvent, seq, inputEventObj);
调用java层对象
WindowInputEventReceiver的dispatchInputEvent方法。(gInputEventReceiverClassInfo对应的对象是
WindowInputEventReceiver,这时在应用程序进程注册InputChannel时调用本地方法nativeInit时注册进去的)。
private void dispatchInputEvent(int seq, InputEvent event) {
mSeqMap.put(event.getSequenceNumber(), seq);
onInputEvent(event);
}
public void onInputEvent(InputEvent event) {
enqueueInputEvent(event, this, 0, true);
}
void enqueueInputEvent(InputEvent event,
InputEventReceiver receiver, int flags, boolean processImmediately) {
QueuedInputEvent q = obtainQueuedInputEvent(event, receiver, flags);
// Always enqueue the input event in order, regardless of its time stamp.
// We do this because the application or the IME may inject key events
// in response to touch events and we want to ensure that the injected keys
// are processed in the order they were received and we cannot trust that
// the time stamp of injected events are monotonic.
QueuedInputEvent last = mPendingInputEventTail;
if (last == null) {
mPendingInputEventHead = q;
mPendingInputEventTail = q;
} else {
last.mNext = q;
mPendingInputEventTail = q;
}
mPendingInputEventCount += 1;
Trace.traceCounter(Trace.TRACE_TAG_INPUT, mPendingInputEventQueueLengthCounterName,
mPendingInputEventCount);
if (processImmediately) {
doProcessInputEvents();
} else {
scheduleProcessInputEvents();
}
}
事件都是立即执行(processImmediately为true),接着进入到ViewRoot的事件处理流程,这里不再赘述。
private void finishInputEvent(QueuedInputEvent q) {
if (q.mReceiver != null) {
boolean handled = (q.mFlags & QueuedInputEvent.FLAG_FINISHED_HANDLED) != 0;
q.mReceiver.finishInputEvent(q.mEvent, handled);
} else {
q.mEvent.recycleIfNeededAfterDispatch();
}
recycleQueuedInputEvent(q);
}
public final void finishInputEvent(InputEvent event, boolean handled) {
if (event == null) {
throw new IllegalArgumentException("event must not be null");
}
if (mReceiverPtr == 0) {
Log.w(TAG, "Attempted to finish an input event but the input event "
+ "receiver has already been disposed.");
} else {
int index = mSeqMap.indexOfKey(event.getSequenceNumber());
if (index < 0) {
Log.w(TAG, "Attempted to finish an input event that is not in progress.");
} else {
int seq = mSeqMap.valueAt(index);
mSeqMap.removeAt(index);
nativeFinishInputEvent(mReceiverPtr, seq, handled);
}
}
event.recycleIfNeededAfterDispatch();
}
static void nativeFinishInputEvent(JNIEnv* env, jclass clazz, jint receiverPtr,
jint seq, jboolean handled) {
sp receiver =
reinterpret_cast(receiverPtr);
status_t status = receiver->finishInputEvent(seq, handled);
if (status && status != DEAD_OBJECT) {
String8 message;
message.appendFormat("Failed to finish input event. status=%d", status);
jniThrowRuntimeException(env, message.string());
}
}
status_t NativeInputEventReceiver::finishInputEvent(uint32_t seq, bool handled) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Finished input event.", getInputChannelName());
#endif
status_t status = mInputConsumer.sendFinishedSignal(seq, handled);
if (status) {
if (status == WOULD_BLOCK) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ Could not send finished signal immediately. "
"Enqueued for later.", getInputChannelName());
#endif
Finish finish;
finish.seq = seq;
finish.handled = handled;
mFinishQueue.add(finish);
if (mFinishQueue.size() == 1) {
setFdEvents(ALOOPER_EVENT_INPUT | ALOOPER_EVENT_OUTPUT);
}
return OK;
}
ALOGW("Failed to send finished signal on channel '%s'. status=%d",
getInputChannelName(), status);
}
return status;
}
status_t InputConsumer::sendFinishedSignal(uint32_t seq, bool handled) {
#if DEBUG_TRANSPORT_ACTIONS
ALOGD("channel '%s' consumer ~ sendFinishedSignal: seq=%u, handled=%s",
mChannel->getName().string(), seq, handled ? "true" : "false");
#endif
if (!seq) {
ALOGE("Attempted to send a finished signal with sequence number 0.");
return BAD_VALUE;
}
// Send finished signals for the batch sequence chain first.
size_t seqChainCount = mSeqChains.size();
if (seqChainCount) {
uint32_t currentSeq = seq;
uint32_t chainSeqs[seqChainCount];
size_t chainIndex = 0;
for (size_t i = seqChainCount; i-- > 0; ) {
const SeqChain& seqChain = mSeqChains.itemAt(i);
if (seqChain.seq == currentSeq) {
currentSeq = seqChain.chain;
chainSeqs[chainIndex++] = currentSeq;
mSeqChains.removeAt(i);
}
}
status_t status = OK;
while (!status && chainIndex-- > 0) {
status = sendUnchainedFinishedSignal(chainSeqs[chainIndex], handled);
}
if (status) {
// An error occurred so at least one signal was not sent, reconstruct the chain.
do {
SeqChain seqChain;
seqChain.seq = chainIndex != 0 ? chainSeqs[chainIndex - 1] : seq;
seqChain.chain = chainSeqs[chainIndex];
mSeqChains.push(seqChain);
} while (chainIndex-- > 0);
return status;
}
}
// Send finished signal for the last message in the batch.
return sendUnchainedFinishedSignal(seq, handled);
}
status_t InputConsumer::sendUnchainedFinishedSignal(uint32_t seq, bool handled) {
InputMessage msg;
msg.header.type = InputMessage::TYPE_FINISHED;
msg.body.finished.seq = seq;
msg.body.finished.handled = handled;
return mChannel->sendMessage(&msg);
}
应用程序处理完事件后,最终也是通过Channel的sendMessage发送一个处理完成的Socket消息来通知channel的另一端。
int InputDispatcher::handleReceiveCallback(int fd, int events, void* data) {
InputDispatcher* d = static_cast(data);
{ // acquire lock
AutoMutex _l(d->mLock);
ssize_t connectionIndex = d->mConnectionsByFd.indexOfKey(fd);
if (connectionIndex < 0) {
ALOGE("Received spurious receive callback for unknown input channel. "
"fd=%d, events=0x%x", fd, events);
return 0; // remove the callback
}
bool notify;
sp connection = d->mConnectionsByFd.valueAt(connectionIndex);
if (!(events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP))) {
if (!(events & ALOOPER_EVENT_INPUT)) {
ALOGW("channel '%s' ~ Received spurious callback for unhandled poll event. "
"events=0x%x", connection->getInputChannelName(), events);
return 1;
}
nsecs_t currentTime = now();
bool gotOne = false;
status_t status;
for (;;) {
uint32_t seq;
bool handled;
status = connection->inputPublisher.receiveFinishedSignal(&seq, &handled);
if (status) {
break;
}
d->finishDispatchCycleLocked(currentTime, connection, seq, handled);
gotOne = true;
}
if (gotOne) {
d->runCommandsLockedInterruptible();
if (status == WOULD_BLOCK) {
return 1;
}
}
notify = status != DEAD_OBJECT || !connection->monitor;
if (notify) {
ALOGE("channel '%s' ~ Failed to receive finished signal. status=%d",
connection->getInputChannelName(), status);
}
} else {
// Monitor channels are never explicitly unregistered.
// We do it automatically when the remote endpoint is closed so don't warn
// about them.
notify = !connection->monitor;
if (notify) {
ALOGW("channel '%s' ~ Consumer closed input channel or an error occurred. "
"events=0x%x", connection->getInputChannelName(), events);
}
}
// Unregister the channel.
d->unregisterInputChannelLocked(connection->inputChannel, notify);
return 0; // remove the callback
} // release lock
}
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
const sp& connection, uint32_t seq, bool handled) {
#if DEBUG_DISPATCH_CYCLE
ALOGD("channel '%s' ~ finishDispatchCycle - seq=%u, handled=%s",
connection->getInputChannelName(), seq, toString(handled));
#endif
connection->inputPublisherBlocked = false;
if (connection->status == Connection::STATUS_BROKEN
|| connection->status == Connection::STATUS_ZOMBIE) {
return;
}
// Notify other system components and prepare to start the next dispatch cycle.
onDispatchCycleFinishedLocked(currentTime, connection, seq, handled);
}
void InputDispatcher::onDispatchCycleFinishedLocked(
nsecs_t currentTime, const sp& connection, uint32_t seq, bool handled) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doDispatchCycleFinishedLockedInterruptible);
commandEntry->connection = connection;
commandEntry->eventTime = currentTime;
commandEntry->seq = seq;
commandEntry->handled = handled;
}
void InputDispatcher::doDispatchCycleFinishedLockedInterruptible(
CommandEntry* commandEntry) {
sp connection = commandEntry->connection;
nsecs_t finishTime = commandEntry->eventTime;
uint32_t seq = commandEntry->seq;
bool handled = commandEntry->handled;
// Handle post-event policy actions.
DispatchEntry* dispatchEntry = connection->findWaitQueueEntry(seq);
if (dispatchEntry) {
nsecs_t eventDuration = finishTime - dispatchEntry->deliveryTime;
if (eventDuration > SLOW_EVENT_PROCESSING_WARNING_TIMEOUT) {
String8 msg;
msg.appendFormat("Window '%s' spent %0.1fms processing the last input event: ",
connection->getWindowName(), eventDuration * 0.000001f);
dispatchEntry->eventEntry->appendDescription(msg);
ALOGI("%s", msg.string());
}
bool restartEvent;
if (dispatchEntry->eventEntry->type == EventEntry::TYPE_KEY) {
KeyEntry* keyEntry = static_cast(dispatchEntry->eventEntry);
restartEvent = afterKeyEventLockedInterruptible(connection,
dispatchEntry, keyEntry, handled);
} else if (dispatchEntry->eventEntry->type == EventEntry::TYPE_MOTION) {
MotionEntry* motionEntry = static_cast(dispatchEntry->eventEntry);
restartEvent = afterMotionEventLockedInterruptible(connection,
dispatchEntry, motionEntry, handled);
} else {
restartEvent = false;
}
// Dequeue the event and start the next cycle.
// Note that because the lock might have been released, it is possible that the
// contents of the wait queue to have been drained, so we need to double-check
// a few things.
if (dispatchEntry == connection->findWaitQueueEntry(seq)) {
connection->waitQueue.dequeue(dispatchEntry);
traceWaitQueueLengthLocked(connection);
if (restartEvent && connection->status == Connection::STATUS_NORMAL) {
connection->outboundQueue.enqueueAtHead(dispatchEntry);
traceOutboundQueueLengthLocked(connection);
} else {
releaseDispatchEntryLocked(dispatchEntry);
}
}
// Start the next dispatch cycle for this connection.
startDispatchCycleLocked(now(), connection);
}
由此可知在 InputDispatcher
一收到InputConsumer
发送的 finish message之后
,
就马上去呼叫
startDispatchCycleLocked
函數去檢查 outboundQueue
里面还有沒有新的input event.
若有的话就放入InputMessage
共享內存,
然後通知 ViewRootImpl
去共享內存抓取新的 input event.
若沒有新的 input event,
就不做事等待有新的input event
进入 outboundQueue.