- 【教程4>第9章>第8节】通过FPGA实现RGB图像转换为CMYK图像——verilog实现与MATLAB辅助验证
fpga和matlab
#fpga开发CMYKRGB教程4verilog
本课程学习成果预览(FPGA测试结果通过MATLAB显示)目录1.软件版本2.通过FPGA实现RGB图像转CMYK3.RGB图像转CMYK的测试3.1步骤一:生成测试样本3.2步骤二:通过testbench调用X2.bmp3.3步骤三:vivado仿真3.4步骤四:MATLAB辅助验证4.视频操作步骤演示欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- MATLAB中绘制系统零极点图(Pole-Zero Map)的几种方法
爱代码的小黄人
matlab开发语言
以下是MATLAB中绘制系统零极点图(Pole-ZeroMap)的常见方法及各自适用场景总结,适用于你当前在分析符号表达式/系统传函后的使用需求:✅方法一:pzmap(tf(num,den))(最常用,推荐)用法:num_coeffs=sym2poly(num);den_coeffs=sym2poly(den);sys=tf(num_coeffs,den_coeffs);pzmap(sys);✅优
- 将地面距离(米)转换为经纬度变化量(度),基于WGS84椭球模型。MATLAB
SageFlower
遥感
将地面距离(米)转换为经纬度变化量(度)1函数解释2主程序以下是针对该MATLAB代码的逐行解析和功能说明:1函数解释函数定义与用途function[lat_deg,lon_deg]=metersToDegrees(lat,meters)•功能:将地面距离(米)转换为经纬度变化量(度),基于WGS84椭球模型。•输入:•lat:纬度(-90°到90°)•meters:地面距离(默认16米)•输出:
- MATLAB在工业缺陷检测中的应用
本文还有配套的精品资源,点击获取简介:缺陷检测、伤痕检测、瑕疵检测和划痕检测是工业自动化和质量控制中至关重要的环节,MATLAB作为一种高级编程环境,在图像处理和计算机视觉任务中扮演了重要角色。本文详细介绍了如何使用MATLAB实现这些检测过程,包括图像采集、预处理、特征提取和决策制定等步骤。通过介绍内置图像处理工具箱中的应用,色彩转换技术、边缘检测算法以及形态学操作等方法,我们阐述了如何识别和处
- MATLAB电力系统暂态稳定分析
rit8432499
matlab开发语言
MATLAB电力系统暂态稳定分析程序MATLAB电力系统暂态稳定分析程序,包含潮流计算和机电暂态仿真功能。实现电力系统暂态稳定分析流程,包括牛顿-拉夫逊法潮流计算、同步发电机模型、励磁系统模型和数值积分求解。%===================================================%电力系统暂态稳定分析程序%功能:%1.牛顿-拉夫逊法潮流计算%2.机电暂态仿真%3.同
- 【缺陷检测】基于计算机视觉实现电路板智能检测系统附Matlab代码
matlab科研助手
计算机视觉matlab人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍随着信息技术的飞速发展和电子产品的日益普及,印刷电路板(PCB)作为电子产品的核心组件,其质量直接关系到整个系统的性能和可靠性。传统的电路板检测主要依赖人工目检,存在效率低下
- Matlab自学笔记六十四:求解自变量带有约束条件的方程
1.说明有一些方程由于实际问题的需要,需要设置一些限制约束条件,例如x>0等,若使用Matlab编程求解,首先尝试使用符号运算求解(符号运算可参考文章54:Matlab自学笔记五十四:符号数学工具箱和符号运算、符号求解、绘图),简单的约束条件可以在声明sym变量的时候直接写出,复杂的约束条件可能需要使用assume设置假设条件(符号变量假设条件的用法请参考文章56:Matlab快速上手五十六:详解
- 【代码】Matlab鸟瞰图函数
用matlab把图像转化为鸟瞰图代码clcclearcloseallI=imread('road.png');figure(1)imshow(I)bevSensor=load('birdsEyeConfig');birdsEyeImage=transformImage(bevSensor.birdsEyeConfig,I);figure(2)imshow(birdsEyeImage)效果
- 基于Paillier同态加密算法的金融数据安全共享机制研究【附数据】
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 吴恩达 机器学习cs229-学习笔记-更新中
是娜个二叉树!
机器学习学习笔记
吴恩达机器学习cs22901基础概念语言:Matlab/python监督学习定义:获取一组数据集拟合数据从X到Y的映射回归问题:预测的Y是连续的,Y是实数分类问题:分类指的是Y取离散值,输出是离散的两组,正示例和负示例,把所有样本推到这条直线上,用0,1,标识逻辑回归算法,拟合直线区分正,负示例处理相对大量特征的回归算法或者分类算法支持向量机算法:它使用的不是1,2,3,10个输入特征,而是使用无
- matlab dft变换_傅里叶变换篇(一)——从时域到频域
腿毛拆床垫
matlabdft变换
这次直接进入正题哈!啥是傅里叶变换?傅里叶变换可以将时域信号转变成频域,通过分析频谱了解信号的组成。网上有大量介绍傅里叶变换的好文章,感兴趣的小伙伴可以自行查阅!什么是时域和频域呢?简单的理解是:时域的横轴为时间,反映信号随时间的变化,频域的横轴为频率,反映信号组成的不同频率分量。现实生活中因为时间和采样的原因,得到的信号大多是有限长度序列的离散时间序列的傅里叶变换(DFT)。傅里叶变换的计算机实
- Matlab 数字图像 第二章 矩阵及其运算
肌肉猛1大序子
matlab矩阵开发语言图像处理
目录2.1矩阵的创建2.1.1直接输入:2.1.2载入外部数据文件2.1.3利用内置函数创建2.2矩阵的寻访2.2.1下标元素访问2.2.2访问单元素2.3矩阵的拼接2.3.1矩阵拼接符[]2.3.2函数2.4矩阵的运算2.4.1加减2.4.2乘除2.4.3乘方2.4.4按位运算2.4.5行列式与秩2.4.6逆与迹2.4.7矩阵的范数(?)2.4.8特征值和特征向量PS纯纯用来记笔记,要是有错随时
- 数字图像处理(三:图像如果当作矩阵,那加减乘除处理了矩阵,那图像咋变):从LED冬奥会、奥运会及春晚等等大屏,到手机小屏,快来挖一挖里面都有什么
数字图像处理(三)一、(准备工作:咋玩,用什么玩具)图像以矩阵形式存储,那矩阵一变、图像立刻跟着变?1.Python+JupyterNotebook/Lab+库(NumPy,OpenCV,Matplotlib,scikit-image)2.MATLAB+ImageProcessingToolbox3.JavaScript+HTML5Canvas+浏览器4.专业的图像处理软件(带脚本/插件功能)二、
- 第十二届“中关村青联杯”全国研究生数学建模竞赛-A题:水面舰艇编队防空和信息化战争评估模型(续)(附MATLAB代码实现)
格图素书
大数据竞赛赛题解析数学建模
目录5.3.3问题三的总结5.4问题四的模型建立与求解5.4.1问题分析5.4.2计算方位角和航向角5.4.3计算距离D和水平速度5.4.4分析并建立模型5.4.4.1聚类分析方法的提出5.4.4.2模型的建立5.4.5问题四的总结5.5问题五的模型建立与求解5.5.1问题五的分析5.5.2传统的战争评估模型5.5.2.1正规作战模型5.5.2.2游击作战模型5.5.2.3混合作战模型5.5.3信
- 【舰艇控制】基于matlab具有不确定性和扰动的水面舰艇的自适应有限时间平滑非线性滑模跟踪控制【含Matlab源码 13748期】复现含文献
海神之光
Matlab路径规划(进阶版)matlab
欢迎来到海神之光博客之家✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式Matlab毕设:Matlab毕设系列–说明期刊发表:发表北大核心,SCI不是梦!!⛳️座右铭:行百里者,半于九十。更多Matlab路径规划仿真内容点击①Matlab路径规划(进阶版)②付费专栏Matlab路径规划(初级版)⛳️关注
- csc(x)积分推导
weixin_43420126
数学基础知识数据挖掘人工智能
在MATLAB中同时绘制sin(x),csc(x)和ln∣tan(x/2)∣的函数图像,需要处理函数的奇点(如csc(x)在sin(x)=0时无定义,ln∣tan(x/2)∣在x=kπ时无定义)(deepseek生成matlab代码)%定义x范围(-2π到2π),高密度采样x=linspace(-2*pi,2*pi,10000);%精确识别csc(x)的奇点(sin(x)=0的点)c
- 【图像分割】基于模糊聚类FCM和改进的模糊聚类算法实现CT图像分割matlab代码
天天Matlab科研工作室
图像处理Matlab各类代码算法聚类matlab
1简介医学影像分割的基本目标是将图像分割成不同的解剖组织,从而可以从背景中提取出感兴趣区域。因为图像的低分辨率和弱对比度,实现医学影像分割是一件具有挑战的任务。而且,这个任务由于噪声和伪阴影变得更加困难,这些干扰项可能是因器材限制、重建算法和患者移动等原因造成的。目前还没有通用的医学图像分割算法,算法的优点和缺点经常根据所研究的问题而变化。将分割概念具体到颅内出血CT图像上,就是将颅腔中的出血病灶
- matlab的伯德图为何从360度显示?应如何修改解决?
wangkeyen
matlabmatlab
绘制伯德图时相位从360度开始显示,通常是因为软件默认将相频特性的起始相位设置为系统稳定运行所需的基准角度。显示设置调整:在MATLAB的Simulink环境中,可通过双击伯德图窗口,在弹出的选项中检查是否启用了“Adjustphaseoffsets”功能。若未启用,可点击启用即可解决。如下图所示:
- 评估遥感云雾浓度的无参化指标(适用于其它合成雾的场景)
夏天是冰红茶
去雾与加雾opencv计算机视觉人工智能
前言本文总结了四种用于评估图像雾浓度的无参考指标:FADE、densityD、AuthESI和JSFD。FADE通过MATLAB实现,能较好反映雾气浓度但计算耗时;densityD基于TensorFlow,对天空场景较为敏感;AuthESI主要用于评估合成雾真实性,不适用于浓度评估;JSFD结合HSV空间S值、白点比例和暗通道特征,准确性较高但计算时间长。实验表明,FADE和JSFD以及densi
- numpy教程
Jeffrey_Pacino
编程学习numpy数据分析
使用jupyternotebook分析数据之前导入的包importnumpyasnp#linearalgebraimportpandasaspd#dataprocessing,CSVfileI/O(e.g.pd.read_csv)%matplotlibinlineimportmatplotlib.pyplotasplt#Matlab-styleplottingimportseabornassns
- 基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解
基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解文章目录基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解1.RELM原理2.分类问题求解3.基于探路者算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN
- 基于探路者算法优化的核极限学习机(KELM)分类算法
智能算法研学社(Jack旭)
智能优化算法应用机器学习#核极限学习机(KELM)算法分类数据挖掘
基于探路者算法优化的核极限学习机(KELM)分类算法文章目录基于探路者算法优化的核极限学习机(KELM)分类算法1.KELM理论基础2.分类问题3.基于探路者算法优化的KELM4.测试结果5.Matlab代码摘要:本文利用探路者算法对核极限学习机(KELM)进行优化,并用于分类1.KELM理论基础核极限学习机(KernelBasedExtremeLearningMachine,KELM)是基于极限
- MATLAB最优滤波器设计函数firpm的使用详解
codersnote
编程小识matlab算法最优滤波器firpmkaiserord
窗函数法设计的缺点无法选择过渡带、通带、阻带衰减等指标阶数不是最优的凯塞窗[n,wn,beta,ftype]=kaiserord(f,a,dev);h_kaiser=fir1(n,wn
- 数字滤波器原理及应用 借助matlab,数字滤波器原理及应用(借助Matlab)
陈慈龙
数字滤波器原理及应用借助matlab
第l章数字信号处理引言1.1引言1.2数字信号处理起源1.3信号域1.4信号分类1.5DStP:一个学科第2章采样原理2.1引言2.2第l章数字信号处理引言1.1引言1.2数字信号处理起源1.3信号域1.4信号分类1.5DStP:一个学科第2章采样原理2.1引言2.2香农采样原理2.3信号重构2.4香农插值2.5采样方法2.6多通道采样2.7MATLAB音频选项第3章混叠3.1引言3.2混叠3.3
- matlab时域采样与频域采样,实验二:时域采样与频域采样.doc
weixin_39905624
matlab时域采样与频域采样
实验二:时域采样与频域采样实验二:时域采样与频域采样1.实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。2.实验原理与方法对模拟信号以间隔T进行时域等间隔理想采样,形成的采样信号的频谱是原模拟信号频谱以采样
- 有源电力滤波器matlab仿真实验报告,基于Matlab有源电力滤波器APF的仿真研究
目前,对有源电力滤波器的研究越来越广泛。一方面,研究者众多,不仅有高等院校、研究所,而且也有许多电力局、大型企业等;另一方面,研究涉及谐波检测方法、控制策略、PWM波的形成等有源滤波技术的各个方面,对谐波检测控制方法和谐波检测电路的实现方法研究尤其活跃,出现了许多新的方法,这些方法都是旨在提高谐波检测的实时性和检测精度,因为谐波检测方法及谐波检测电路的实时性和检测精度对有源电力滤波器的滤波性能起着
- matlab达林算法的电加热炉温度控制,基于单片机的电加热炉温度控制算法与仿真研究[1]...
收稿日期:2011-11作者简介:张宇驰(1978—),男,硕士,讲师,研究方向为自动控制与机电一体化。基于单片机的电加热炉温度控制算法与仿真研究张宇驰(湖南工业职业技术学院,湖南长沙410208)摘要:介绍几种基于单片机的电加热炉温度控制算法,通过对PID控制算法仿真、SMITH控制算法仿真、大林算法仿真的比较分析,仿真结果验证了大林控制算法的稳定性和鲁棒性较好,几乎没有超调量,且稳态误差小。关
- 9个基于MATLAB 事件触发控制
985计算机硕士
matlabmatlab开发语言
9个基于MATLAB事件触发控制1线性多智能体系统一致性的分布式动态事件触发控制方法。2固定拓扑和切换拓扑下多智能体系统的分布式动态事件触发一致性控制.3有限时间一致性的分布式事件驱动控制.4多智能体系统的分布式事件触发控制.5多代理网络中基于事件的协议。6非线性不确定性多智能体系统的定时事件触发一致性控制.7线性多智能体网络的全分布式事件触发协议.8非理想一般线性多智能体系统基于观测器的事件触发
- matlab_simulink仿真BLDC无刷直流电机 转速电流双闭环 调速系统
985计算机硕士
仿真模型电力系统matlab开发语言
matlab/simulink仿真BLDC无刷直流电机转速电流双闭环调速系统以下文字及示例代码仅供参考文章目录一、为什么需要“转速-电流”双闭环?二、系统整体架构三、在Simulink中搭建步骤3.1新建模型与库引用3.2电机本体3.3电流采样与Clarke/Park3.4电流环PI设计3.5转速环PI设计3.6SVPWM与逆变器3.7速度给定与负载四、一键运行脚本五、结果解读【标题】Matlab
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_