Java基础——深入理解Java线程池

简介


       我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:

       如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间

       那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?

       在Java中可以通过线程池来达到这样的效果。今天我们就来详细讲解一下Java的线程池,首先我们从最核心的ThreadPoolExecutor类中的方法讲起,然后再讲述它的实现原理,接着给出了它的使用示例,最后讨论了一下如何合理配置线程池的大小。

以下是本文的目录大纲:

一、Java中的ThreadPoolExecutor类

二、深入剖析线程池实现原理

三、使用示例

四、为什么使用线程池

五、使用线程池的风险

六、有效使用线程池的准则

七、线程池的大小设置


一、Java中的ThreadPoolExecutor类


       java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因此如果要透彻地了解Java中的线程池,必须先了解这个类。下面我们来看一下ThreadPoolExecutor类的具体实现源码。

在ThreadPoolExecutor类中提供了四个构造方法:

public class ThreadPoolExecutor extends AbstractExecutorService {
    .....
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue workQueue);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue workQueue,ThreadFactory threadFactory);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue workQueue,RejectedExecutionHandler handler);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
        BlockingQueue workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler);
    ...
}

       从上面的代码可以得知,ThreadPoolExecutor继承了AbstractExecutorService类,并提供了四个构造器,事实上,通过观察每个构造器的源码具体实现,发现前面三个构造器都是调用的第四个构造器进行的初始化工作

 下面解释下一下构造器中各个参数的含义:

  • corePoolSize:核心池的大小,这个参数跟后面讲述的线程池的实现原理有非常大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;
  • maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程;
  • keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;
  • unit:参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:
TimeUnit.DAYS;               //天
TimeUnit.HOURS;             //小时
TimeUnit.MINUTES;           //分钟
TimeUnit.SECONDS;           //秒
TimeUnit.MILLISECONDS;      //毫秒
TimeUnit.MICROSECONDS;      //微妙
TimeUnit.NANOSECONDS;       //纳秒
  • workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:
ArrayBlockingQueue;
LinkedBlockingQueue;
SynchronousQueue;

       ArrayBlockingQueue和PriorityBlockingQueue使用较少,一般使用LinkedBlockingQueue和Synchronous。线程池的排队策略与BlockingQueue有关。

  • threadFactory:线程工厂,主要用来创建线程;
  • handler:表示当拒绝处理任务时的策略,有以下四种取值:
ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。 
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务 

       具体参数的配置与线程池的关系将在下一节讲述。

       从上面给出的ThreadPoolExecutor类的代码可以知道,ThreadPoolExecutor继承了AbstractExecutorService,我们来看一下AbstractExecutorService的实现:

public abstract class AbstractExecutorService implements ExecutorService {
 
     
    protected  RunnableFuture newTaskFor(Runnable runnable, T value) { };
    protected  RunnableFuture newTaskFor(Callable callable) { };
    public Future submit(Runnable task) {};
    public  Future submit(Runnable task, T result) { };
    public  Future submit(Callable task) { };
    private  T doInvokeAny(Collection> tasks,
                            boolean timed, long nanos)
        throws InterruptedException, ExecutionException, TimeoutException {
    };
    public  T invokeAny(Collection> tasks)
        throws InterruptedException, ExecutionException {
    };
    public  T invokeAny(Collection> tasks,
                           long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
    };
    public  List> invokeAll(Collection> tasks)
        throws InterruptedException {
    };
    public  List> invokeAll(Collection> tasks,
                                         long timeout, TimeUnit unit)
        throws InterruptedException {
    };
}

       AbstractExecutorService是一个抽象类,它实现了ExecutorService接口

       我们接着看ExecutorService接口的实现:

public interface ExecutorService extends Executor {
 
    void shutdown();
    boolean isShutdown();
    boolean isTerminated();
    boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException;
     Future submit(Callable task);
     Future submit(Runnable task, T result);
    Future submit(Runnable task);
     List> invokeAll(Collection> tasks)
        throws InterruptedException;
     List> invokeAll(Collection> tasks,
                                  long timeout, TimeUnit unit)
        throws InterruptedException;
 
     T invokeAny(Collection> tasks)
        throws InterruptedException, ExecutionException;
     T invokeAny(Collection> tasks,
                    long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}
       而ExecutorService又是继承了Executor接口,我们看一下Executor接口的实现:
public interface Executor {
    void execute(Runnable command);
}

       到这里,大家应该明白了ThreadPoolExecutor、AbstractExecutorService、ExecutorService和Executor几个之间的关系了。

  • Executor是一个顶层接口,在它里面只声明了一个方法execute(Runnable),返回值为void,参数为Runnable类型,从字面意思可以理解,就是用来执行传进去的任务的;
  • 然后ExecutorService接口继承了Executor接口,并声明了一些方法:submit、invokeAll、invokeAny以及shutDown等;
  • 抽象类AbstractExecutorService实现了ExecutorService接口,基本实现了ExecutorService中声明的所有方法;
  • 然后ThreadPoolExecutor继承了类AbstractExecutorService。

       在ThreadPoolExecutor类中有几个非常重要的方法:

execute()
submit()
shutdown()
shutdownNow()

       execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行。

       submit()方法是在ExecutorService中声明的方法,在AbstractExecutorService就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方法,只不过它利用了Future来获取任务执行结果(Future相关内容将在下一篇讲述)。

       shutdown()和shutdownNow()是用来关闭线程池的。

       还有很多其他的方法:

       比如:getQueue() 、getPoolSize() 、getActiveCount()、getCompletedTaskCount()等获取与线程池相关属性的方法,有兴趣的朋友可以自行查阅API。


二、深入剖析线程池实现原理


在上一节我们从宏观上介绍了ThreadPoolExecutor,下面我们来深入解析一下线程池的具体实现原理,将从下面几个方面讲解:

1、线程池状态

2、任务的执行

3、线程池中的线程初始化

4、任务缓存队列及排队策略

5、任务拒绝策略

6、线程池的关闭

7、线程池容量的动态调整


1、线程池状态

在ThreadPoolExecutor中定义了一个volatile变量,另外定义了几个static final变量表示线程池的各个状态:

volatile int runState;
static final int RUNNING    = 0;
static final int SHUTDOWN   = 1;
static final int STOP       = 2;
static final int TERMINATED = 3;

       runState:表示当前线程池的状态,它是一个volatile变量用来保证线程之间的可见性;

下面的几个static final变量表示runState可能的几个取值:

       RUNNING:当创建线程池后,初始时,线程池处于RUNNING状态;

       SHUTDOWN:如果调用了shutdown()方法,则线程池处于SHUTDOWN状态,此时线程池不能够接受新的任务,它会等待所有任务执行完毕;

       STOP:如果调用了shutdownNow()方法,则线程池处于STOP状态,此时线程池不能接受新的任务,并且会去尝试终止正在执行的任务;

       TERMINATED:当线程池处于SHUTDOWN或STOP状态,并且所有工作线程已经销毁,任务缓存队列已经清空或执行结束后,线程池被设置为TERMINATED状态。


2、任务的执行

       在了解将任务提交给线程池到任务执行完毕整个过程之前,我们先来看一下ThreadPoolExecutor类中其他的一些比较重要成员变量:

private final BlockingQueue workQueue;              //任务缓存队列,用来存放等待执行的任务
private final ReentrantLock mainLock = new ReentrantLock();   //线程池的主要状态锁,对线程池状态(比如线程池大小
                                                              //、runState等)的改变都要使用这个锁
private final HashSet workers = new HashSet();  //用来存放工作集
 
private volatile long  keepAliveTime;    //线程存活时间   
private volatile boolean allowCoreThreadTimeOut;   //是否允许为核心线程设置存活时间
private volatile int   corePoolSize;     //核心池的大小(即线程池中的线程数目大于这个参数时,提交的任务会被放进任务缓存队列)
private volatile int   maximumPoolSize;   //线程池最大能容忍的线程数
 
private volatile int   poolSize;       //线程池中当前的线程数
 
private volatile RejectedExecutionHandler handler; //任务拒绝策略
 
private volatile ThreadFactory threadFactory;   //线程工厂,用来创建线程
 
private int largestPoolSize;   //用来记录线程池中曾经出现过的最大线程数
 
private long completedTaskCount;   //用来记录已经执行完毕的任务个数

       每个变量的作用都已经标明出来了,这里要重点解释一下corePoolSize、maximumPoolSize、largestPoolSize三个变量。

       corePoolSize在很多地方被翻译成核心池大小,其实我的理解这个就是线程池的大小。举个简单的例子:

       假如有一个工厂,工厂里面有10个工人,每个工人同时只能做一件任务。

       因此只要当10个工人中有工人是空闲的,来了任务就分配给空闲的工人做;

       当10个工人都有任务在做时,如果还来了任务,就把任务进行排队等待;

       如果说新任务数目增长的速度远远大于工人做任务的速度,那么此时工厂主管可能会想补救措施,比如重新招4个临时工人进来;

       然后就将任务也分配给这4个临时工人做;

       如果说着14个工人做任务的速度还是不够,此时工厂主管可能就要考虑不再接收新的任务或者抛弃前面的一些任务了。

       当这14个工人当中有人空闲时,而新任务增长的速度又比较缓慢,工厂主管可能就考虑辞掉4个临时工了,只保持原来的10个工人,毕竟请额外的工人是要花钱的。

       这个例子中的corePoolSize就是10,而maximumPoolSize就是14(10+4)。

       也就是说corePoolSize就是线程池大小,maximumPoolSize在我看来是线程池的一种补救措施,即任务量突然过大时的一种补救措施。

       不过为了方便理解,在本文后面还是将corePoolSize翻译成核心池大小。

       largestPoolSize只是一个用来起记录作用的变量,用来记录线程池中曾经有过的最大线程数目,跟线程池的容量没有任何关系。

       下面我们进入正题,看一下任务从提交到最终执行完毕经历了哪些过程。

       在ThreadPoolExecutor类中,最核心的任务提交方法是execute()方法,虽然通过submit也可以提交任务,但是实际上submit方法里面最终调用的还是execute()方法,所以我们只需要研究execute()方法的实现原理即可:

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
        if (runState == RUNNING && workQueue.offer(command)) {
            if (runState != RUNNING || poolSize == 0)
                ensureQueuedTaskHandled(command);
        }
        else if (!addIfUnderMaximumPoolSize(command))
            reject(command); // is shutdown or saturated
    }
}

       上面的代码可能看起来不是那么容易理解,下面我们一句一句解释:

       首先,判断提交的任务command是否为null,若是null,则抛出空指针异常;

       接着是这句,这句要好好理解一下:

if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command))

       由于是或条件运算符,所以先计算前半部分的值,如果线程池中当前线程数不小于核心池大小,那么就会直接进入下面的if语句块了。

       如果线程池中当前线程数小于核心池大小,则接着执行后半部分,也就是执行

addIfUnderCorePoolSize(command)

       如果执行完addIfUnderCorePoolSize这个方法返回false,则继续执行下面的if语句块,否则整个方法就直接执行完毕了。

       如果执行完addIfUnderCorePoolSize这个方法返回false,然后接着判断:

if (runState == RUNNING && workQueue.offer(command))
       如果当前线程池处于RUNNING状态,则将任务放入任务缓存队列;如果当前线程池不处于RUNNING状态或者任务放入缓存队列失败,则执行:
addIfUnderMaximumPoolSize(command)

       如果执行addIfUnderMaximumPoolSize方法失败,则执行reject()方法进行任务拒绝处理。

       回到前面:

if (runState == RUNNING && workQueue.offer(command))
       这句的执行,如果说当前线程池处于RUNNING状态且将任务放入任务缓存队列成功,则继续进行判断:
if (runState != RUNNING || poolSize == 0)
       这句判断是为了防止在将此任务添加进任务缓存队列的同时其他线程突然调用shutdown或者shutdownNow方法关闭了线程池的一种应急措施。如果是这样就执行:
ensureQueuedTaskHandled(command)

       进行应急处理,从名字可以看出是保证 添加到任务缓存队列中的任务得到处理。

       我们接着看2个关键方法的实现:addIfUnderCorePoolSize和addIfUnderMaximumPoolSize:

private boolean addIfUnderCorePoolSize(Runnable firstTask) {
    Thread t = null;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        if (poolSize < corePoolSize && runState == RUNNING)
            t = addThread(firstTask);        //创建线程去执行firstTask任务   
        } finally {
        mainLock.unlock();
    }
    if (t == null)
        return false;
    t.start();
    return true;
}
       这个是addIfUnderCorePoolSize方法的具体实现,从名字可以看出它的意图就是当低于核心池大小时执行的方法。下面看其具体实现,首先获取到锁,因为这地方涉及到线程池状态的变化,先通过if语句判断当前线程池中的线程数目是否小于核心池大小,有朋友也许会有疑问:前面在execute()方法中不是已经判断过了吗,只有线程池当前线程数目小于核心池大小才会执行addIfUnderCorePoolSize方法的,为何这地方还要继续判断?原因很简单,前面的判断过程中并没有加锁,因此可能在execute方法判断的时候poolSize小于corePoolSize,而判断完之后,在其他线程中又向线程池提交了任务,就可能导致poolSize不小于corePoolSize了,所以需要在这个地方继续判断。然后接着判断线程池的状态是否为RUNNING,原因也很简单,因为有可能在其他线程中调用了shutdown或者shutdownNow方法。然后就是执行
t = addThread(firstTask);

       这个方法也非常关键,传进去的参数为提交的任务,返回值为Thread类型。然后接着在下面判断t是否为空,为空则表明创建线程失败(即poolSize>=corePoolSize或者runState不等于RUNNING),否则调用t.start()方法启动线程。

       我们来看一下addThread方法的实现:

private Thread addThread(Runnable firstTask) {
    Worker w = new Worker(firstTask);
    Thread t = threadFactory.newThread(w);  //创建一个线程,执行任务   
    if (t != null) {
        w.thread = t;            //将创建的线程的引用赋值为w的成员变量       
        workers.add(w);
        int nt = ++poolSize;     //当前线程数加1       
        if (nt > largestPoolSize)
            largestPoolSize = nt;
    }
    return t;
}

       在addThread方法中,首先用提交的任务创建了一个Worker对象,然后调用线程工厂threadFactory创建了一个新的线程t,然后将线程t的引用赋值给了Worker对象的成员变量thread,接着通过workers.add(w)将Worker对象添加到工作集当中。

       下面我们看一下Worker类的实现:

private final class Worker implements Runnable {
    private final ReentrantLock runLock = new ReentrantLock();
    private Runnable firstTask;
    volatile long completedTasks;
    Thread thread;
    Worker(Runnable firstTask) {
        this.firstTask = firstTask;
    }
    boolean isActive() {
        return runLock.isLocked();
    }
    void interruptIfIdle() {
        final ReentrantLock runLock = this.runLock;
        if (runLock.tryLock()) {
            try {
        if (thread != Thread.currentThread())
        thread.interrupt();
            } finally {
                runLock.unlock();
            }
        }
    }
    void interruptNow() {
        thread.interrupt();
    }
 
    private void runTask(Runnable task) {
        final ReentrantLock runLock = this.runLock;
        runLock.lock();
        try {
            if (runState < STOP &&
                Thread.interrupted() &&
                runState >= STOP)
            boolean ran = false;
            beforeExecute(thread, task);   //beforeExecute方法是ThreadPoolExecutor类的一个方法,没有具体实现,用户可以根据
            //自己需要重载这个方法和后面的afterExecute方法来进行一些统计信息,比如某个任务的执行时间等           
            try {
                task.run();
                ran = true;
                afterExecute(task, null);
                ++completedTasks;
            } catch (RuntimeException ex) {
                if (!ran)
                    afterExecute(task, ex);
                throw ex;
            }
        } finally {
            runLock.unlock();
        }
    }
 
    public void run() {
        try {
            Runnable task = firstTask;
            firstTask = null;
            while (task != null || (task = getTask()) != null) {
                runTask(task);
                task = null;
            }
        } finally {
            workerDone(this);   //当任务队列中没有任务时,进行清理工作       
        }
    }
}
       它实际上实现了Runnable接口,因此上面的Thread t = threadFactory.newThread(w);效果跟下面这句的效果基本一样:
Thread t = new Thread(w);

       相当于传进去了一个Runnable任务,在线程t中执行这个Runnable。

       既然Worker实现了Runnable接口,那么自然最核心的方法便是run()方法了:

public void run() {
    try {
        Runnable task = firstTask;
        firstTask = null;
        while (task != null || (task = getTask()) != null) {
            runTask(task);
            task = null;
        }
    } finally {
        workerDone(this);
    }
}
       从run方法的实现可以看出,它首先执行的是通过构造器传进来的任务firstTask,在调用runTask()执行完firstTask之后,在while循环里面不断通过getTask()去取新的任务来执行,那么去哪里取呢?自然是从任务缓存队列里面去取,getTask是ThreadPoolExecutor类中的方法,并不是Worker类中的方法,下面是getTask方法的实现:
Runnable getTask() {
    for (;;) {
        try {
            int state = runState;
            if (state > SHUTDOWN)
                return null;
            Runnable r;
            if (state == SHUTDOWN)  // Help drain queue
                r = workQueue.poll();
            else if (poolSize > corePoolSize || allowCoreThreadTimeOut) //如果线程数大于核心池大小或者允许为核心池线程设置空闲时间,
                //则通过poll取任务,若等待一定的时间取不到任务,则返回null
                r = workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS);
            else
                r = workQueue.take();
            if (r != null)
                return r;
            if (workerCanExit()) {    //如果没取到任务,即r为null,则判断当前的worker是否可以退出
                if (runState >= SHUTDOWN) // Wake up others
                    interruptIdleWorkers();   //中断处于空闲状态的worker
                return null;
            }
            // Else retry
        } catch (InterruptedException ie) {
            // On interruption, re-check runState
        }
    }
}

       在getTask中,先判断当前线程池状态,如果runState大于SHUTDOWN(即为STOP或者TERMINATED),则直接返回null。

       如果runState为SHUTDOWN或者RUNNING,则从任务缓存队列取任务。

       如果当前线程池的线程数大于核心池大小corePoolSize或者允许为核心池中的线程设置空闲存活时间,则调用poll(time,timeUnit)来取任务,这个方法会等待一定的时间,如果取不到任务就返回null。

       然后判断取到的任务r是否为null,为null则通过调用workerCanExit()方法来判断当前worker是否可以退出,我们看一下workerCanExit()的实现:

private boolean workerCanExit() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    boolean canExit;
    //如果runState大于等于STOP,或者任务缓存队列为空了
    //或者  允许为核心池线程设置空闲存活时间并且线程池中的线程数目大于1
    try {
        canExit = runState >= STOP ||
            workQueue.isEmpty() ||
            (allowCoreThreadTimeOut &&
             poolSize > Math.max(1, corePoolSize));
    } finally {
        mainLock.unlock();
    }
    return canExit;
}
       也就是说如果线程池处于STOP状态、或者任务队列已为空或者允许为核心池线程设置空闲存活时间并且线程数大于1时,允许worker退出。如果允许worker退出,则调用interruptIdleWorkers()中断处于空闲状态的worker,我们看一下interruptIdleWorkers()的实现:
void interruptIdleWorkers() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        for (Worker w : workers)  //实际上调用的是worker的interruptIfIdle()方法
            w.interruptIfIdle();
    } finally {
        mainLock.unlock();
    }
}
       从实现可以看出,它实际上调用的是worker的interruptIfIdle()方法,在worker的interruptIfIdle()方法中:
void interruptIfIdle() {
    final ReentrantLock runLock = this.runLock;
    if (runLock.tryLock()) {    //注意这里,是调用tryLock()来获取锁的,因为如果当前worker正在执行任务,锁已经被获取了,是无法获取到锁的
                                //如果成功获取了锁,说明当前worker处于空闲状态
        try {
    if (thread != Thread.currentThread())  
    thread.interrupt();
        } finally {
            runLock.unlock();
        }
    }
}

       这里有一个非常巧妙的设计方式,假如我们来设计线程池,可能会有一个任务分派线程,当发现有线程空闲时,就从任务缓存队列中取一个任务交给空闲线程执行。但是在这里,并没有采用这样的方式,因为这样会要额外地对任务分派线程进行管理,无形地会增加难度和复杂度,这里直接让执行完任务的线程去任务缓存队列里面取任务来执行。

        我们再看addIfUnderMaximumPoolSize方法的实现,这个方法的实现思想和addIfUnderCorePoolSize方法的实现思想非常相似,唯一的区别在于addIfUnderMaximumPoolSize方法是在线程池中的线程数达到了核心池大小并且往任务队列中添加任务失败的情况下执行的:

private boolean addIfUnderMaximumPoolSize(Runnable firstTask) {
    Thread t = null;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        if (poolSize < maximumPoolSize && runState == RUNNING)
            t = addThread(firstTask);
    } finally {
        mainLock.unlock();
    }
    if (t == null)
        return false;
    t.start();
    return true;
}

       看到没有,其实它和addIfUnderCorePoolSize方法的实现基本一模一样,只是if语句判断条件中的poolSize < maximumPoolSize不同而已。

到这里,大部分朋友应该对任务提交给线程池之后到被执行的整个过程有了一个基本的了解,下面总结一下:

       1)首先,要清楚corePoolSize和maximumPoolSize的含义;

       2)其次,要知道Worker是用来起到什么作用的;

       3)要知道任务提交给线程池之后的处理策略,这里总结一下主要有4点:

  • 如果当前线程池中的线程数目小于corePoolSize,则每来一个任务,就会创建一个线程去执行这个任务;
  • 如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添加到任务缓存队列当中,若添加成功,则该任务会等待空闲线程将其取出去执行;若添加失败(一般来说是任务缓存队列已满),则会尝试创建新的线程去执行这个任务;
  • 如果当前线程池中的线程数目达到maximumPoolSize,则会采取任务拒绝策略进行处理;
  • 如果线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止,直至线程池中的线程数目不大于corePoolSize;如果允许为核心池中的线程设置存活时间,那么核心池中的线程空闲时间超过keepAliveTime,线程也会被终止。

3、线程池中的线程初始化

       默认情况下,创建线程池之后,线程池中是没有线程的,需要提交任务之后才会创建线程。

在实际中如果需要线程池创建之后立即创建线程,可以通过以下两个方法办到:

  • prestartCoreThread():初始化一个核心线程;
  • prestartAllCoreThreads():初始化所有核心线程。

下面是这2个方法的实现:

public boolean prestartCoreThread() {
    return addIfUnderCorePoolSize(null); //注意传进去的参数是null
}
 
public int prestartAllCoreThreads() {
    int n = 0;
    while (addIfUnderCorePoolSize(null))//注意传进去的参数是null
        ++n;
    return n;
}
       注意上面传进去的参数是null,根据第2小节的分析可知如果传进去的参数为null,则最后执行线程会阻塞在getTask方法中的。
r = workQueue.take();
       即等待任务队列中有任务。

4、任务缓存队列及排队策略

       在前面我们多次提到了任务缓存队列,即workQueue,它用来存放等待执行的任务。

workQueue的类型为BlockingQueue,通常可以取下面三种类型:

       1)ArrayBlockingQueue:基于数组的先进先出队列,此队列创建时必须指定大小;

       2)LinkedBlockingQueue:基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为Integer.MAX_VALUE;

       3)synchronousQueue:这个队列比较特殊,它不会保存提交的任务,而是将直接新建一个线程来执行新来的任务。


5、任务拒绝策略

       当线程池的任务缓存队列已满并且线程池中的线程数目达到maximumPoolSize,如果还有任务到来就会采取任务拒绝策略,通常有以下四种策略:

ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务

6、线程池的关闭

ThreadPoolExecutor提供了两个方法,用于线程池的关闭,分别是shutdown()和shutdownNow(),其中:

  • shutdown():不会立即终止线程池,而是要等所有任务缓存队列中的任务都执行完后才终止,但再也不会接受新的任务
  • shutdownNow():立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓存队列,返回尚未执行的任务


7、线程池容量的动态调整

ThreadPoolExecutor提供了动态调整线程池容量大小的方法:setCorePoolSize()和setMaximumPoolSize()

  • setCorePoolSize:设置核心池大小
  • setMaximumPoolSize:设置线程池最大能创建的线程数目大小

       当上述参数从小变大时,ThreadPoolExecutor进行线程赋值,还可能立即创建新的线程来执行任务。


三、使用示例


       前面我们讨论了关于线程池的实现原理,这一节我们来看一下它的具体使用:

public class Test {
     public static void main(String[] args) {   
         ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 10, 200, TimeUnit.MILLISECONDS,
                 new ArrayBlockingQueue(5));
          
         for(int i=0;i<15;i++){
             MyTask myTask = new MyTask(i);
             executor.execute(myTask);
             System.out.println("线程池中线程数目:"+executor.getPoolSize()+",队列中等待执行的任务数目:"+
             executor.getQueue().size()+",已执行玩别的任务数目:"+executor.getCompletedTaskCount());
         }
         executor.shutdown();
     }
}
 
 
class MyTask implements Runnable {
    private int taskNum;
     
    public MyTask(int num) {
        this.taskNum = num;
    }
     
    @Override
    public void run() {
        System.out.println("正在执行task "+taskNum);
        try {
            Thread.currentThread().sleep(4000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("task "+taskNum+"执行完毕");
    }
}
执行结果:

正在执行task 0
线程池中线程数目:1,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
线程池中线程数目:2,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
正在执行task 1
线程池中线程数目:3,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
正在执行task 2
线程池中线程数目:4,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
正在执行task 3
线程池中线程数目:5,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
正在执行task 4
线程池中线程数目:5,队列中等待执行的任务数目:1,已执行玩别的任务数目:0
线程池中线程数目:5,队列中等待执行的任务数目:2,已执行玩别的任务数目:0
线程池中线程数目:5,队列中等待执行的任务数目:3,已执行玩别的任务数目:0
线程池中线程数目:5,队列中等待执行的任务数目:4,已执行玩别的任务数目:0
线程池中线程数目:5,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
线程池中线程数目:6,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
正在执行task 10
线程池中线程数目:7,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
正在执行task 11
线程池中线程数目:8,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
正在执行task 12
线程池中线程数目:9,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
正在执行task 13
线程池中线程数目:10,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
正在执行task 14
task 3执行完毕
task 0执行完毕
task 2执行完毕
task 1执行完毕
正在执行task 8
正在执行task 7
正在执行task 6
正在执行task 5
task 4执行完毕
task 10执行完毕
task 11执行完毕
task 13执行完毕
task 12执行完毕
正在执行task 9
task 14执行完毕
task 8执行完毕
task 5执行完毕
task 7执行完毕
task 6执行完毕
task 9执行完毕

       从执行结果可以看出,当线程池中线程的数目大于5时,便将任务放入任务缓存队列里面,当任务缓存队列满了之后,便创建新的线程。如果上面程序中,将for循环中改成执行20个任务,就会抛出任务拒绝异常了。

       不过在java doc中,并不提倡我们直接使用ThreadPoolExecutor,而是使用Executors类中提供的几个静态方法来创建线程池:

Executors.newCachedThreadPool();        //创建一个缓冲池,缓冲池容量大小为Integer.MAX_VALUE
Executors.newSingleThreadExecutor();   //创建容量为1的缓冲池
Executors.newFixedThreadPool(int);    //创建固定容量大小的缓冲池
Executors.newScheduledThreadPool(int)   //创建一个定长的线程池,而且支持定时的以及周期性的任务执行,支持定时及周期性任务执行。


下面是这四个静态方法的具体实现;

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue());
}
public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue()));
}
public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue());
}

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
    return new ScheduledThreadPoolExecutor(corePoolSize);
}

       从它们的具体实现来看,它们实际上也是调用了ThreadPoolExecutor,只不过参数都已配置好了。

       1、newFixedThreadPool创建的线程池corePoolSize和maximumPoolSize值是相等的,它使用的LinkedBlockingQueue;

       2、newSingleThreadExecutor将corePoolSize和maximumPoolSize都设置为1,也使用的LinkedBlockingQueue;

       3、newCachedThreadPool将corePoolSize设置为0,将maximumPoolSize设置为Integer.MAX_VALUE,使用的SynchronousQueue,也就是说来了任务就创建线程运行,当线程空闲超过60秒,就销毁线程。

       4、newScheduledThreadPool实例化了一个ScheduledThreadPoolExecutor对象,该类继承了ThreadPoolExecutor,其中maximumPoolSize设置为Integer.MAX_VALUE,使用的是DelayedWorkQueue。

       实际中,如果Executors提供的四个静态方法能满足要求,就尽量使用它提供的四个方法,因为自己去手动配置ThreadPoolExecutor的参数有点麻烦,要根据实际任务的类型和数量来进行配置。

       另外,如果ThreadPoolExecutor达不到要求,可以自己继承ThreadPoolExecutor类进行重写。


1、newFixedThreadPool

       创建一个指定工作线程数量的线程池。每当提交一个任务就创建一个工作线程,如果工作线程数量达到线程池初始的最大数,则将提交的任务存入到池队列中。

       FixedThreadPool是一个典型且优秀的线程池,它具有线程池提高程序效率和节省创建线程时所耗的开销的优点。但是,在线程池空闲时,即线程池中没有可运行任务时,它不会释放工作线程,还会占用一定的系统资源。

示例代码如下:

public class ThreadPoolTest {

	public static void main(String[] args) {
		ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
		for (int i = 0; i < 10; i++) {
			final int index = i;
			fixedThreadPool.execute(new Runnable() {
				public void run() {
					try {
						System.out.println(index);
						Thread.sleep(2000);
					} catch (InterruptedException e) {
						e.printStackTrace();
					}
				}
			});
		}
	}
}
       因为线程池大小为3 ,每个任务输出 index sleep 2 秒,所以每两秒打印 3 个数字。
       定长线程池的大小最好根据系统资源进行设置如Runtime.getRuntime().availableProcessors()。

2、newSingleThreadExecutor

       创建一个单线程化的Executor,即只创建唯一的工作者线程来执行任务,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。如果这个线程异常结束,会有另一个取代它,保证顺序执行。单工作线程最大的特点是可保证顺序地执行各个任务,并且在任意给定的时间不会有多个线程是活动的

示例代码如下:

public class ThreadPoolTest {

	public static void main(String[] args) {
		ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
		for (int i = 0; i < 10; i++) {
			final int index = i;
			singleThreadExecutor.execute(new Runnable() {
				public void run() {
					try {
						System.out.println(index);
						Thread.sleep(2000);
					} catch (InterruptedException e) {
						e.printStackTrace();
					}
				}
			});
		}
	}
}

3、newCachedThreadPool

       创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。

这种类型的线程池特点是:

  • 工作线程的创建数量几乎没有限制(其实也有限制的,数目为Interger. MAX_VALUE), 这样可灵活的往线程池中添加线程。
  • 如果长时间没有往线程池中提交任务,即如果工作线程空闲了指定的时间(默认为1分钟),则该工作线程将自动终止。终止后,如果你又提交了新的任务,则线程池重新创建一个工作线程。
  • 在使用CachedThreadPool时,一定要注意控制任务的数量,否则,由于大量线程同时运行,很有会造成系统瘫痪。

示例代码如下:

public class ThreadPoolTest {

	public static void main(String[] args) {
		ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
		for (int i = 0; i < 10; i++) {
			final int index = i;
		    try {
		    	Thread.sleep(index * 1000);
		    } catch (InterruptedException e) {
		    	e.printStackTrace();
		    }
		    cachedThreadPool.execute(new Runnable() {
		    	public void run() {
		    		System.out.println(index);
		    	}
		    });
		}
	}
}


4、newScheduleThreadPool

       创建一个定长的线程池,而且支持定时的以及周期性的任务执行支持定时及周期性任务执行。

延迟3秒执行延迟执行示例代码如下:

public class ThreadPoolTest {

	public static void main(String[] args) {
		ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);
		scheduledThreadPool.schedule(new Runnable() {
			public void run() {
				System.out.println("delay 3 seconds");
		   }
		}, 3, TimeUnit.SECONDS);
	}
}
表示延迟1 秒后每 3 秒执行一次定期执行示例代码如下:

public class ThreadPoolTest {

	public static void main(String[] args) {
		ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);
		scheduledThreadPool.scheduleAtFixedRate(new Runnable() {
			public void run() {
				System.out.println("delay 1 seconds, and excute every 3 seconds");
			}
		}, 1, 3, TimeUnit.SECONDS);
	}
}

四、为什么使用线程池 


       诸如 Web 服务器、数据库服务器、文件服务器或邮件服务器之类的许多服务器应用程序都面向处理来自某些远程来源的大量短小的任务。请求以某种方式到达服务器,这种方式可能是通过网络协议(例如 HTTPFTP 或 POP)、通过 JMS 队列或者可能通过轮询数据库。不管请求如何到达,服务器应用程序中经常出现的情况是:单个任务处理的时间很短而请求的数目却是巨大的。

       构建服务器应用程序的一个简单模型是:每当一个请求到达就创建一个新线程,然后在新线程中为请求服务。实际上对于原型开发这种方法工作得很好,但如果试图部署以这种方式运行的服务器应用程序,那么这种方法的严重不足就很明显。每个请求对应一个线程(thread-per-request)方法的不足之一是:为每个请求创建一个新线程的开销很大;为每个请求创建新线程的服务器在创建和销毁线程上花费的时间和消耗的系统资源要比花在处理实际的用户请求的时间和资源更多。

       除了创建和销毁线程的开销之外,活动的线程也消耗系统资源。在一个 JVM 里创建太多的线程可能会导致系统由于过度消耗内存而用完内存或切换过度。为了防止资源不足,服务器应用程序需要一些办法来限制任何给定时刻处理的请求数目。

       线程池为线程生命周期开销问题和资源不足问题提供了解决方案。通过对多个任务重用线程,线程创建的开销被分摊到了多个任务上。其好处是,因为在请求到达时线程已经存在,所以无意中也消除了线程创建所带来的延迟。这样,就可以立即为请求服务,使应用程序响应更快。而且,通过适当地调整线程池中的线程数目,也就是当请求的数目超过某个阈值时,就强制其它任何新到的请求一直等待,直到获得一个线程来处理为止,从而可以防止资源不足。


五、使用线程池的风险


       虽然线程池是构建多线程应用程序的强大机制,但使用它并不是没有风险的。用线程池构建的应用程序容易遭受任何其它多线程应用程序容易遭受的所有并发风险,诸如同步错误和死锁,它还容易遭受特定于线程池的少数其它风险,诸如与池有关的死锁、资源不足和线程泄漏。


1、死锁

       任何多线程应用程序都有死锁风险。当一组进程或线程中的每一个都在等待一个只有该组中另一个进程才能引起的事件时,我们就说这组进程或线程 死锁了。死锁的最简单情形是:线程 持有对象 的独占锁,并且在等待对象 的锁,而线程 持有对象 的独占锁,却在等待对象 的锁。除非有某种方法来打破对锁的等待(Java 锁定不支持这种方法),否则死锁的线程将永远等下去。

       虽然任何多线程程序中都有死锁的风险,但线程池却引入了另一种死锁可能,在那种情况下,所有池线程都在执行已阻塞的等待队列中另一任务的执行结果的任务,但这一任务却因为没有未被占用的线程而不能运行。当线程池被用来实现涉及许多交互对象的模拟,被模拟的对象可以相互发送查询,这些查询接下来作为排队的任务执行,查询对象又同步等待着响应时,会发生这种情况。


2、资源不足

       线程池的一个优点在于:相对于其它替代调度机制(有些我们已经讨论过)而言,它们通常执行得很好。但只有恰当地调整了线程池大小时才是这样的。线程消耗包括内存和其它系统资源在内的大量资源。除了 Thread 对象所需的内存之外,每个线程都需要两个可能很大的执行调用堆栈。除此以外,JVM 可能会为每个 Java 线程创建一个本机线程,这些本机线程将消耗额外的系统资源。最后,虽然线程之间切换的调度开销很小,但如果有很多线程,环境切换也可能严重地影响程序的性能。

       如果线程池太大,那么被那些线程消耗的资源可能严重地影响系统性能。在线程之间进行切换将会浪费时间,而且使用超出比您实际需要的线程可能会引起资源匮乏问题,因为池线程正在消耗一些资源,而这些资源可能会被其它任务更有效地利用。除了线程自身所使用的资源以外,服务请求时所做的工作可能需要其它资源,例如JDBC 连接、套接字或文件。这些也都是有限资源,有太多的并发请求也可能引起失效,例如不能分配 JDBC 连接。


3、并发错误

       线程池和其它排队机制依靠使用 wait()  notify() 方法,这两个方法都难于使用。如果编码不正确,那么可能丢失通知,导致线程保持空闲状态,尽管队列中有工作要处理。使用这些方法时,必须格外小心。而最好使用现有的、已经知道能工作的实现,例如 util.concurrent 包。


4、线程泄漏

       各种类型的线程池中一个严重的风险是线程泄漏,当从池中除去一个线程以执行一项任务,而在任务完成后该线程却没有返回池时,会发生这种情况。发生线程泄漏的一种情形出现在任务抛出一个 RuntimeException 或一个 Error 时。如果池类没有捕捉到它们,那么线程只会退出而线程池的大小将会永久减少一个。当这种情况发生的次数足够多时,线程池最终就为空,而且系统将停止,因为没有可用的线程来处理任务。

       有些任务可能会永远等待某些资源或来自用户的输入,而这些资源又不能保证变得可用,用户可能也已经回家了,诸如此类的任务会永久停止,而这些停止的任务也会引起和线程泄漏同样的问题。如果某个线程被这样一个任务永久地消耗着,那么它实际上就被从池除去了。对于这样的任务,应该要么只给予它们自己的线程,要么只让它们等待有限的时间。



5、请求过载

       仅仅是请求就压垮了服务器,这种情况是可能的。在这种情形下,我们可能不想将每个到来的请求都排队到我们的工作队列,因为排在队列中等待执行的任务可能会消耗太多的系统资源并引起资源缺乏。在这种情形下决定如何做取决于您自己;在某些情况下,您可以简单地抛弃请求,依靠更高级别的协议稍后重试请求,您也可以用一个指出服务器暂时很忙的响应来拒绝请求。


六、有效使用线程池的准则


只要您遵循几条简单的准则,线程池可以成为构建服务器应用程序的极其有效的方法:

  • 不要对那些同步等待其它任务结果的任务排队。这可能会导致上面所描述的那种形式的死锁,在那种死锁中,所有线程都被一些任务所占用,这些任务依次等待排队任务的结果,而这些任务又无法执行,因为所有的线程都很忙。
  • 在为时间可能很长的操作使用合用的线程时要小心。如果程序必须等待诸如 I/O 完成这样的某个资源,那么请指定最长的等待时间,以及随后是失效还是将任务重新排队以便稍后执行。这样做保证了:通过将某个线程释放给某个可能成功完成的任务,从而将最终取得某些进展。
  • 理解任务。要有效地调整线程池大小,您需要理解正在排队的任务以及它们正在做什么。它们是 CPU 限制的(CPU-bound)吗?它们是 I/O 限制的(I/O-bound)吗?您的答案将影响您如何调整应用程序。如果您有不同的任务类,这些类有着截然不同的特征,那么为不同任务类设置多个工作队列可能会有意义,这样可以相应地调整每个池。


七、线程池的大小设置


       本节来讨论一个比较重要的话题:如何合理配置线程池大小,仅供参考。

       一般需要根据任务的类型来配置线程池大小:

       1、如果是CPU密集型任务,就需要尽量压榨CPU,参考值可以设为 NCPU+1

       2、如果是IO密集型任务,参考值可以设置为2*NCPU

       当然,这只是一个参考值,具体的设置还需要根据实际情况进行调整,比如可以先将线程池大小设置为参考值,再观察任务运行情况和系统负载、资源利用率来进行适当调整。

       调整线程池的大小基本上就是避免两类错误:线程太少或线程太多。幸运的是,对于大多数应用程序来说,太多和太少之间的余地相当宽。

       请回忆:在应用程序中使用线程有两个主要优点,尽管在等待诸如 I/O 的慢操作,但允许继续进行处理,并且可以利用多处理器。在运行于具有 个处理器机器上的计算限制的应用程序中,在线程数目接近 时添加额外的线程可能会改善总处理能力,而在线程数目超过 时添加额外的线程将不起作用。事实上,太多的线程甚至会降低性能,因为它会导致额外的环境切换开销。

       线程池的最佳大小取决于可用处理器的数目以及工作队列中的任务的性质。若在一个具有 N 个处理器的系统上只有一个工作队列,其中全部是计算性质的任务,在线程池具有 或 N+1 个线程时一般会获得最大的 CPU 利用率。

       对于那些可能需要等待 I/O 完成的任务(例如,从套接字读取 HTTP 请求的任务),需要让池的大小超过可用处理器的数目,因为并不是所有线程都一直在工作。通过使用概要分析,您可以估计某个典型请求的等待时间(WT)与服务时间(ST)之间的比例。如果我们将这一比例称之为 WT/ST,那么对于一个具有 个处理器的系统,需要设置大约 N*(1+WT/ST) 个线程来保持处理器得到充分利用。

       处理器利用率不是调整线程池大小过程中的唯一考虑事项。随着线程池的增长,您可能会碰到调度程序、可用内存方面的限制,或者其它系统资源方面的限制,例如套接字、打开的文件句柄或数据库连接等的数目。



你可能感兴趣的:(Java基础)