一.概念
大端模式(Big-endian):高位字节排放在内存的低地址端,低位字节排放在内存的高地址端,即正序排列,高尾端;
小端模式(Little-endian):低位字节排放在内存的低地址端,高位字节排放在内存的高地址端,即逆序排列,低尾端;
例(无论是小端模式还是大端模式。每个字节内部都是按顺序排列):
1)大端模式:
低地址 -----------------> 高地址
0x0A | 0x0B | 0x0C | 0x0D
2)小端模式:
低地址 ------------------> 高地址
0x0D | 0x0C | 0x0B | 0x0A
3)下面是两个具体例子:
16bit宽的数0x1234在两种模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:
内存地址 | 小端模式存放内容 | 大端模式存放内容 |
0x4000 | 0x34 | 0x12 |
0x4001 | 0x12 | 0x34 |
32bit宽的数0x12345678在两种模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:
内存地址 | 小端模式存放内容 | 大端模式存放内容 |
0x4000 | 0x78 | 0x12 |
0x4001 | 0x56 | 0x34 |
0x4002 | 0x34 | 0x56 |
0x4003 | 0x12 | 0x78 |
4)大端小端没有谁优谁劣,各自优势便是对方劣势:
小端模式 :强制转换数据不需要调整字节内容,1、2、4字节的存储方式一样。
大端模式 :符号位的判定固定为第一个字节,容易判断正负。
以unsigned int num = 0x12345678为例,分别看看在两种字节序下其存储情况,我们可以用unsigned char buf[4]来表示num:
Big-Endian: 低地址存放高位,如下:
低地址
---------------
buf[0] (0x12) -- 高位
buf[1] (0x34)
buf[2] (0x56)
buf[3] (0x78) -- 低位
---------------
高地址
Little-Endian: 低地址存放低位,如下:
低地址
---------------
buf[0] (0x78) -- 低位
buf[1] (0x56)
buf[2] (0x34)
buf[3] (0x12) -- 高位
--------------
高地址
这是因为在计算机中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为 8 bit。但是在C 语言中除了 8 bit 的char之外,还有 16 bit 的 short型,32bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着如果将多个字节安排的问题。大端存储模式和小端存储模式也就应运而生。例如一个16bit的short型 x ,在内存中的地址为 0x0010,x 的值为0x1122,那么0x11位高字节,0x22位低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
一般都是通过 union 来测试的,下面这段代码可以用来测试一下你的编译器是大端模式还是小端模式:
#include
int main (void)
{
union{
short i;
char a[2];
}u;//联合体u
u.a[0] = 0x11;
u.a[1] = 0x22;
printf ("0x%x\n", u.i); //0x2211 为小端 0x1122 为大端
return 0;
}
输出结果:
0x2211
union 型数据所占的空间等于其最大的成员所占的空间。对 union 型的成员的存取都是相对于该联合体基地址的偏移量为 0 处开始,也就是联合体的访问不论对哪个变量的存取都是从 union 的首地址位置开始。
联合是一个在同一个存储空间里存储不同类型数据的数据类型。这些存储区的地址都是一样的,联合里不同存储区的内存是重叠的,修改了任何一个其他的会受影响。那么通过强制类型转换,判断其实存储位置,也可以测试大小端了:
#include
int main (void)
{
short i = 0x1122;
char *a = (char*)(&i);
printf ("0x%x\n", *(a + 0)); //大端为 0x11 小端为 0x22
printf ("0x%x\n", *(a + 1));
return 0;
}
输出结果:
0x22
0x11
一般操作系统都是小端,而通讯协议是大端的。
1)常见CPU的字节序
Big Endian : PowerPC、IBM、Sun
Little Endian : x86、DEC
ARM既可以工作在大端模式,也可以工作在小端模式。
2)常见文件的字节序
Adobe PS – Big Endian
BMP – Little Endian
DXF(AutoCAD) – Variable
GIF – Little Endian
JPEG – Big Endian
MacPaint – Big Endian
RTF – Little Endian
另外,Java和所有的网络通讯协议都是使用Big-Endian的编码。
第一种方法:位操作
#include
typedef unsigned int uint_32 ;
typedef unsigned short uint_16 ;
//16位
#define BSWAP_16(x) \
(uint_16)((((uint_16)(x) & 0x00ff) << 8) | \ (((uint_16)(x) & 0xff00) >> 8) \)
//32位
#define BSWAP_32(x) \
(uint_32)((((uint_32)(x) & 0xff000000) >> 24) | \ (((uint_32)(x) & 0x00ff0000) >> 8) | \
(((uint_32)(x) & 0x0000ff00) << 8) | \ (((uint_32)(x) & 0x000000ff) << 24) \)
//无符号整型16位
uint_16 bswap_16(uint_16 x)
{
return (((uint_16)(x) & 0x00ff) << 8) | \ (((uint_16)(x) & 0xff00) >> 8) ;
}
//无符号整型32位
uint_32 bswap_32(uint_32 x)
{
return (((uint_32)(x) & 0xff000000) >> 24) | \ (((uint_32)(x) & 0x00ff0000) >> 8) | \
(((uint_32)(x) & 0x0000ff00) << 8) | \ (((uint_32)(x) & 0x000000ff) << 24) ;
}
int main(int argc,char *argv[])
{
printf("------------带参宏-------------\n");
printf("%#x\n",BSWAP_16(0x1234)) ;
printf("%#x\n",BSWAP_32(0x12345678));
printf("------------函数调用-----------\n");
printf("%#x\n",bswap_16(0x1234)) ;
printf("%#x\n",bswap_32(0x12345678));
return 0 ;
}
输出结果:
------------带参宏-------------
0x3412
0x78563412
------------函数调用-----------
0x3412
0x78563412
这里有个思考?上面的哪个是转换为大端,哪个是转为小端了呢?
举个例子,比如数字 0x12 34 56 78在内存中的表示形式为:
1)大端模式:
低地址 -----------------> 高地址
0x12 | 0x34 | 0x56 | 0x78
2)小端模式:
低地址 ------------------> 高地址
0x78 | 0x56 | 0x34 | 0x12
则:
转换为大端:
pPack[2] = (u8)((len >> 8) & 0xFF);
pPack[3] = (u8)(len & 0xFF);
转为为小端:
pPack[2] = (u8)(len & 0xFF);
pPack[3] = (u8)((len >> 8) & 0xFF);
第二种方法:从软件的角度理解端模式,使用 htonl, htons, ntohl, ntohs 等函数
参看:百度百科--htonl ()函数
参看:百度百科--htons ()函数
查看:man htonl
NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order
SYNOPSIS
#include
uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);
DESCRIPTION
The htonl() function converts the unsigned integer hostlong from host byte order to network byte order.
The htons() function converts the unsigned short integer hostshort from host byte order to network byte order.
The ntohl() function converts the unsigned integer netlong from network byte order to host byte order.
The ntohs() function converts the unsigned short integer netshort from network byte order to host byte order.
On the i386 the host byte order is Least Significant Byte first, whereas the network byte order, as used on the Internet, is Most
Significant Byte first.
解释:
htonl() //32位无符号整型的主机字节顺序到网络字节顺序的转换(小端->>大端)
htons() //16位无符号短整型的主机字节顺序到网络字节顺序的转换 (小端->>大端)
ntohl() //32位无符号整型的网络字节顺序到主机字节顺序的转换 (大端->>小端)
ntohs() //16位无符号短整型的网络字节顺序到主机字节顺序的转换 (大端->>小端)
注,主机字节顺序,X86一般多为小端(little-endian),网络字节顺序,即大端(big-endian);
举两个小例子:
//示例一
#include
#icnlude
int main (void){
union{
short i;
char a[2];
}u;
u.a[0] = 0x11;
u.a[1] = 0x22;
printf ("0x%x\n", u.i); //0x2211 为小端 0x1122 为大端
printf ("0x%.x\n", htons (u.i)); //大小端转换
return 0;
}
输出结果:
0x2211
0x1122
//示例二
#include
#include
struct ST{
short val1;
short val2;
};
union U{
int val;
struct ST st;
};
int main(void)
{
int a = 0;
union U u1, u2;
a = 0x12345678;
u1.val = a;
printf("u1.val is 0x%x\n", u1.val);
printf("val1 is 0x%x\n", u1.st.val1);
printf("val2 is 0x%x\n", u1.st.val2);
printf("after first convert is: 0x%x\n", htonl(u1.val));
u2.st.val2 = htons(u1.st.val1);
u2.st.val1 = htons(u1.st.val2);
printf("after second convert is: 0x%x\n", u2.val);
return 0;
}
输出结果:
u1.val is 0x12345678
val1 is 0x5678
val2 is 0x1234
after first convert is: 0x78563412
after second convert is: 0x78563412
在对普通文件进行处理也需要考虑端模式问题。在大端模式的处理器下对文件的32,16位读写操作所得到的结果与小端模式的处理器不同。单纯从软件的角度理解上远远不能真正理解大小端模式的区别。事实上,真正的理解大小端模式的区别,必须要从系统的角度,从指令集,寄存器和数据总线上深入理解,大小端模式的区别。
七.验证当前机器系统的存储方式是大端还是小端
#include
#include
union Test {
short num;
char c[sizeof(short)];
};
int main()
{
union Test t;
t.num = 0x0102;
if (t.c[0] == 1 && t.c[1] == 2)
printf("大端!\n");
else if (t.c[0] == 2 && t.c[1] == 1)
printf("小端!\n");
else
printf("未知!\n");
getchar();
//system("PAUSE"); C函数,C++中需包含头文件#include
return 0;
}