eMatrix TCL/MQL

http://www.tcl.tk/man/tcl8.5

http://wiki.tcl.tk/

tcl; set assemblyid "[mql print bus ASSEMBLY LYU99003-01A - select id dump]"

set output [mql expand bus ASSEMBLY "LYU99003-01A" "-" from relationship EBOM_WORK terse  select relationship id dump ]; set count [llength $output] set aNo [llength $output] set row 0 set recCount 0

foreach rec $output {

incr row; if {  $row % 5 == 0 } {

incr recCount; puts "/[recCount:$recCount/]";

puts "/[rec:$rec/]";

mql disconnect connection $rec;

puts "/[row:$row/]";   } #puts "/[row:$row/]";

#puts "/[level: $level/] " #disconnect connect }

#set appList [split [mql expand bus ASSEMBLY "LYU99002-01A" "-" from relationship EBOM_WORK select relationship id dump |] |];

#foreach ap $appList { #puts "/[ap:/]"; #}

exit;

 

expr - Evaluate an expression

SYNOPSIS

expr arg ?arg arg ...?

DESCRIPTION

Concatenates args (adding separator spaces between them), evaluates the result as a Tcl expression, and returns the value. The operators permitted in Tcl expressions include a subset of the operators permitted in C expressions. For those operators common to both Tcl and C, Tcl applies the same meaning and precedence as the corresponding C operators. Expressions almost always yield numeric results (integer or floating-point values). For example, the expression

expr 8.2 + 6

evaluates to 14.2. Tcl expressions differ from C expressions in the way that operands are specified. Also, Tcl expressions support non-numeric operands and string comparisons, as well as some additional operators not found in C.

OPERANDS

A Tcl expression consists of a combination of operands, operators, and parentheses. White space may be used between the operands and operators and parentheses; it is ignored by the expression's instructions. Where possible, operands are interpreted as integer values. Integer values may be specified in decimal (the normal case), in binary (if the first two characters of the operand are 0b), in octal (if the first two characters of the operand are 0o), or in hexadecimal (if the first two characters of the operand are 0x). For compatibility with older Tcl releases, an octal integer value is also indicated simply when the first character of the operand is 0, whether or not the second character is also o. If an operand does not have one of the integer formats given above, then it is treated as a floating-point number if that is possible. Floating-point numbers may be specified in any of several common formats making use of the decimal digits, the decimal point ., the characters e or E indicating scientific notation, and the sign characters + or -. For example, all of the following are valid floating-point numbers: 2.1, 3., 6e4, 7.91e+16. Also recognized as floating point values are the strings Inf and NaN making use of any case for each character. If no numeric interpretation is possible (note that all literal operands that are not numeric or boolean must be quoted with either braces or with double quotes), then an operand is left as a string (and only a limited set of operators may be applied to it).

Operands may be specified in any of the following ways:

 

[1]
As a numeric value, either integer or floating-point.

 

[2]
As a boolean value, using any form understood by string is boolean.

 

[3]
As a Tcl variable, using standard $ notation. The variable's value will be used as the operand.

 

[4]
As a string enclosed in double-quotes. The expression parser will perform backslash, variable, and command substitutions on the information between the quotes, and use the resulting value as the operand

 

[5]
As a string enclosed in braces. The characters between the open brace and matching close brace will be used as the operand without any substitutions.

 

[6]
As a Tcl command enclosed in brackets. The command will be executed and its result will be used as the operand.

 

[7]
As a mathematical function whose arguments have any of the above forms for operands, such as sin($x). See MATH FUNCTIONS below for a discussion of how mathematical functions are handled.

 

Where the above substitutions occur (e.g. inside quoted strings), they are performed by the expression's instructions. However, the command parser may already have performed one round of substitution before the expression processor was called. As discussed below, it is usually best to enclose expressions in braces to prevent the command parser from performing substitutions on the contents.

For some examples of simple expressions, suppose the variable a has the value 3 and the variable b has the value 6. Then the command on the left side of each of the lines below will produce the value on the right side of the line:

expr 3.1 + $a	6.1
expr 2 + "$a.$b"	5.6
expr 4*[llength "6 2"]	8
expr {{word one} < "word $a"}	0

OPERATORS

The valid operators (most of which are also available as commands in the tcl::mathop namespace; see the mathop(n) manual page for details) are listed below, grouped in decreasing order of precedence:

 

- + ~ !
Unary minus, unary plus, bit-wise NOT, logical NOT. None of these operators may be applied to string operands, and bit-wise NOT may be applied only to integers.

 

**
Exponentiation. Valid for any numeric operands.

 

* / %
Multiply, divide, remainder. None of these operators may be applied to string operands, and remainder may be applied only to integers. The remainder will always have the same sign as the divisor and an absolute value smaller than the divisor.

 

+ -
Add and subtract. Valid for any numeric operands.

 

<< >>
Left and right shift. Valid for integer operands only. A right shift always propagates the sign bit.

 

< > <= >=
Boolean less, greater, less than or equal, and greater than or equal. Each operator produces 1 if the condition is true, 0 otherwise. These operators may be applied to strings as well as numeric operands, in which case string comparison is used.

 

== !=
Boolean equal and not equal. Each operator produces a zero/one result. Valid for all operand types.

 

eq ne
Boolean string equal and string not equal. Each operator produces a zero/one result. The operand types are interpreted only as strings.

 

in ni
List containment and negated list containment. Each operator produces a zero/one result and treats its first argument as a string and its second argument as a Tcl list. The in operator indicates whether the first argument is a member of the second argument list; the ni operator inverts the sense of the result.

 

&
Bit-wise AND. Valid for integer operands only.

 

^
Bit-wise exclusive OR. Valid for integer operands only.

 

|
Bit-wise OR. Valid for integer operands only.

 

&&
Logical AND. Produces a 1 result if both operands are non-zero, 0 otherwise. Valid for boolean and numeric (integers or floating-point) operands only.

 

||
Logical OR. Produces a 0 result if both operands are zero, 1 otherwise. Valid for boolean and numeric (integers or floating-point) operands only.

 

x ? y : z
If-then-else, as in C. If x evaluates to non-zero, then the result is the value of y. Otherwise the result is the value of z. The x operand must have a boolean or numeric value.

 

See the C manual for more details on the results produced by each operator. The exponentiation operator promotes types like the multiply and divide operators, and produces a result that is the same as the output of the pow function (after any type conversions.) All of the binary operators group left-to-right within the same precedence level. For example, the command

expr {4*2 < 7}

returns 0.

The &&, ||, and ?: operators have “lazy evaluation”, just as in C, which means that operands are not evaluated if they are not needed to determine the outcome. For example, in the command

expr {$v ? [a] : [b]}

only one of “[a]” or “[b]” will actually be evaluated, depending on the value of $v. Note, however, that this is only true if the entire expression is enclosed in braces; otherwise the Tcl parser will evaluate both “[a]” and “[b]” before invoking the expr command.

MATH FUNCTIONS

When the expression parser encounters a mathematical function such as sin($x), it replaces it with a call to an ordinary Tcl function in the tcl::mathfunc namespace. The processing of an expression such as:

expr {sin($x+$y)}

is the same in every way as the processing of:

expr {[tcl::mathfunc::sin [expr {$x+$y}]]}

which in turn is the same as the processing of:

tcl::mathfunc::sin [expr {$x+$y}]

The executor will search for tcl::mathfunc::sin using the usual rules for resolving functions in namespaces. Either ::tcl::mathfunc::sin or [namespace current]::tcl::mathfunc::sin will satisfy the request, and others may as well (depending on the current namespace path setting).

See the mathfunc(n) manual page for the math functions that are available by default.

TYPES, OVERFLOW, AND PRECISION

All internal computations involving integers are done calling on the LibTomMath multiple precision integer library as required so that all integer calculations are performed exactly. Note that in Tcl releases prior to 8.5, integer calculations were performed with one of the C types long int or Tcl_WideInt, causing implicit range truncation in those calculations where values overflowed the range of those types. Any code that relied on these implicit truncations will need to explicitly add int() or wide() function calls to expressions at the points where such truncation is required to take place.

All internal computations involving floating-point are done with the C type double. When converting a string to floating-point, exponent overflow is detected and results in the double value of Inf or -Inf as appropriate. Floating-point overflow and underflow are detected to the degree supported by the hardware, which is generally pretty reliable.

Conversion among internal representations for integer, floating-point, and string operands is done automatically as needed. For arithmetic computations, integers are used until some floating-point number is introduced, after which floating-point is used. For example,

expr {5 / 4}

returns 1, while

expr {5 / 4.0}
expr {5 / ( [string length "abcd"] + 0.0 )}

both return 1.25. Floating-point values are always returned with a “.” or an “e” so that they will not look like integer values. For example,

expr {20.0/5.0}

returns 4.0, not 4.

STRING OPERATIONS

String values may be used as operands of the comparison operators, although the expression evaluator tries to do comparisons as integer or floating-point when it can, except in the case of the eq and ne operators. If one of the operands of a comparison is a string and the other has a numeric value, a canonical string representation of the numeric operand value is generated to compare with the string operand. Canonical string representation for integer values is a decimal string format. Canonical string representation for floating-point values is that produced by the %g format specifier of Tcl's format command. For example, the commands

expr {"0x03" > "2"}
expr {"0y" < "0x12"}

both return 1. The first comparison is done using integer comparison, and the second is done using string comparison after the second operand is converted to the string 18. Because of Tcl's tendency to treat values as numbers whenever possible, it is not generally a good idea to use operators like == when you really want string comparison and the values of the operands could be arbitrary; it is better in these cases to use the eq or ne operators, or the string command instead.

PERFORMANCE CONSIDERATIONS

Enclose expressions in braces for the best speed and the smallest storage requirements. This allows the Tcl bytecode compiler to generate the best code.

As mentioned above, expressions are substituted twice: once by the Tcl parser and once by the expr command. For example, the commands

set a 3
set b {$a + 2}
expr $b*4

return 11, not a multiple of 4. This is because the Tcl parser will first substitute $a + 2 for the variable b, then the expr command will evaluate the expression $a + 2*4.

Most expressions do not require a second round of substitutions. Either they are enclosed in braces or, if not, their variable and command substitutions yield numbers or strings that do not themselves require substitutions. However, because a few unbraced expressions need two rounds of substitutions, the bytecode compiler must emit additional instructions to handle this situation. The most expensive code is required for unbraced expressions that contain command substitutions. These expressions must be implemented by generating new code each time the expression is executed. When the expression is unbraced to allow the substitution of a function or operator, consider using the commands documented in the mathfunc(n) or mathop(n) manual pages directly instead.

EXAMPLES

Define a procedure that computes an “interesting” mathematical function:

proc tcl::mathfunc::calc {x y} {
    expr { ($x**2 - $y**2) / exp($x**2 + $y**2) }
}

Convert polar coordinates into cartesian coordinates:

# convert from ($radius,$angle)
set x [expr { $radius * cos($angle) }]
set y [expr { $radius * sin($angle) }]

Convert cartesian coordinates into polar coordinates:

# convert from ($x,$y)
set radius [expr { hypot($y, $x) }]
set angle  [expr { atan2($y, $x) }]

Print a message describing the relationship of two string values to each other:

puts "a and b are [expr {$a eq $b ? {equal} : {different}}]"

Set a variable to whether an environment variable is both defined at all and also set to a true boolean value:

set isTrue [expr {
    [info exists ::env(SOME_ENV_VAR)] &&
    [string is true -strict $::env(SOME_ENV_VAR)]
}]

Generate a random integer in the range 0..99 inclusive:

set randNum [expr { int(100 * rand()) }]

################################################################################ # vector and matrix operations                                                 # ################################################################################ proc mat_invert_dec {mat} { ############################### # inverts a matrix in GF(2^n) # ###############################      set rows [llength $mat]      # make sure each row has same length, insuring we got a square matrix      foreach row $mat {          if {[llength $row] != $rows} {return}        }      # initialize the inverse with E, inversion like at school:      # transform mat into E, apply needed operations to inv too, at the      # end inv will contain the inverse of mat.      set inv [mat_unity_dec $rows]      for {set row 0} {$row < $rows} {incr row} {          # if the pivot is zero, then seek other row to add until it is nonzero          if {[lindex [lindex $mat $row] $row] == 0} {              for {set other $row} {$other < $rows} {incr other} {                  # don't add this row onto itself, would set the row to zero                  if {$other == $row} {continue}                  # get the appropriate element                  if {[lindex [lindex $mat $other] $row] != 0} {break}                }              # at this point either we have a row we can add or no other row              # is possible.              # The latter case makes the matrice non invertible              if {$other == $rows} {return}              # a possible row was found              set new_row [vect_vect_add_dec [lindex $mat $row]/                                             [lindex $mat $other]]              set mat [lreplace $mat $row $row $new_row]              # reflect to E              set new_inv [vect_vect_add_dec [lindex $inv $row]/                                             [lindex $inv $other]]              set inv [lreplace $inv $row $row $new_inv]            }; # if pivot == 0          # set the pivot to 1          set piv_inv [inv_dec [lindex [lindex $mat $row] $row]]          set new_row [scal_vect_mult_dec $piv_inv [lindex $mat $row]]          set mat [lreplace $mat $row $row $new_row]          # reflect to E          set new_inv [scal_vect_mult_dec $piv_inv [lindex $inv $row]]          set inv [lreplace $inv $row $row $new_inv]          # now pivot  is 1          for {set other 0} {$other < $rows} {incr other} {              # don't apply to self              if {$other == $row} {continue}              # make the entries in the column where the pivot resides zero              set this_elem [lindex [lindex $mat $other] $row]              set new_mat [scal_vect_mult_dec $this_elem [lindex $mat $row]]              set new_mat [vect_vect_add_dec $new_mat [lindex $mat $other]]              set mat [lreplace $mat $other $other $new_mat]              # reflect to E              set new_inv [scal_vect_mult_dec $this_elem [lindex $inv $row]]              set new_inv [vect_vect_add_dec $new_inv [lindex $inv $other]]              set inv [lreplace $inv $other $other $new_inv]            }        }; # end foreach row of the matrix      # check that row is not only zeros, matrice would have been not invertible      foreach row $mat {          set sorted [lsort -unique $row]          if {([llength $sorted] == 1) && ([lindex $sorted 0] == 0)} { return }        }      return $inv    } proc scal_vect_mult_dec {scal vect} { ##################################### # multiplies a vector with a scalar # #####################################      set result {}      foreach elem $vect {lappend result [mult_dec $scal $elem] }      return $result    } proc vect_vect_add_dec {vecta vectb} { ################### # Adds two vectors# ###################      if {[llength $vecta] != [llength $vectb]} {return}      set result {}      foreach elema $vecta elemb $vectb {lappend result [add_dec $elema $elemb]}      return $result    } proc mat_unity_dec {ord} { #################################### # makes an (ord x ord) unit matrix # ####################################      for {set row 0} {$row < $ord} {incr row} {          set row_str [string replace [string repeat 0 $ord] $row $row 1]          lappend unity [split $row_str ""]        }      return $unity    } proc mat_vect_mult_dec {mat vect} { ######################### # matrix vector product # #########################      set retvect {}      foreach row $mat {          set prod [vect_vect_dot_dec $row $vect]          if {$prod eq ""} {return}          lappend retvect $prod        }      return $retvect    } proc vect_vect_dot_dec {vecta vectb} { ###################################### # compute the dot product of vectors # ######################################      if {[llength $vecta] != [llength $vectb]} {return}      set result 0      foreach elema $vecta elemb $vectb {          set prod [mult_dec $elema $elemb]          if {$prod == ""} {return}          set result [add_dec $result $prod]        }      return $result    } ################################################################################ # operations using the gal_state look up tables will work after initialisation # # with an irreducible polynomial and after choice of a generator element.      # # All operations use decimals                                                  # ################################################################################ proc add_dec {a b} { ##################### # performs addition # #####################      return [gal_add_dec $a $b]    } proc mult_dec {a b} { ####################################################### # multiply using the logarithm and exp look up tables # #######################################################      global gal_state      if {($a == 0)||($b == 0)} {return 0}      set loga [log $a]      set logb [log $b]      if {($loga == "")||($logb == "")} {return}      if {$a == 1} {return $b}      if {$b == 1} {return $a}      set logres [expr ($loga+$logb)%$gal_state(max_elem)]      return [exp $logres]    } proc inv_dec {num} { ############################### # returns  the inverse of num # ###############################      global gal_state      if {![info exists gal_state]} {return}      return [lindex $gal_state(inv)   $num]    } proc exp {num} { ########################### # returns $primitive^$num # ###########################      global gal_state      if {![info exists gal_state]} {return}      return [lindex $gal_state(exp) $num]    } proc log {num} { ################################ # returns log($num)|$primitive # ################################      global gal_state      if {![info exists gal_state]} {return}      if {$num == 0} {return}      return [lindex $gal_state(log)   $num]    } ################################################################################ # Creation of the look up tables to speed up operations                        # ################################################################################ proc init_gal_dec {poly primitive} { ######################################################################### # create logarithm table in GF(2^ord), ord is the order of the polynom  # # create a exponetial table in GF(2^ord)                                # # records the polynomial used for the field                             # # records the primitive element                                         # # records the maximum of the field                                      # #########################################################################      global gal_state      catch {unset gal_state}      if {![gal_is_primitive_elem_dec $primitive $poly]} {return 0}      set num_ent [get_two_power_dec $poly]      set gal_state(max_elem) [expr {$num_ent-1}]      set num_exps [expr $num_ent - 1]      set gal_state(poly) $poly      set gal_state(primitive) $primitive      # make exponential table      set gal_state(exp) [list 1 $primitive]      incr num_exps -1      while {$num_exps} {          lappend gal_state(exp) /            [gal_mult_dec $poly [lindex $gal_state(exp) end] $primitive]            incr num_exps -1        }      # make logarithm table      lappend gal_state(log) {}      set num_logs [expr $num_ent - 1]      for {set num 1} {$num <= $num_logs} {incr num} {          lappend gal_state(log) [lsearch -exact $gal_state(exp) $num]        }      # make inverse table      set log1 [log 1]      set gal_state(inv)  [list {} "1"]      for {set num 2} {$num <= $num_logs} {incr num} {          set logn [log $num]          lappend gal_state(inv) [exp [expr {$gal_state(max_elem) - $logn}]]        }      return 1    } ################################################################################ # Basic operations in GF(2^n), these are to be used in order to create the     # # look up tables for exp,log & inv. The look up tables are supposed to speed   # # up calculations                                                              # ################################################################################ proc gal_add_dec {a b} { ################################## # performs addition in GF(2^n)   # # Addition is done bitwise mod 2 # ##################################      if {![string is integer $a]} {return ""}      if {![string is integer $b]} {return ""}      return [expr {$a^$b}]    } proc gal_poly_mult_dec {a b} { ############################################## # performs polynom multiplication in GF(2^n) # # Amounts to long multiplication with the    # # addition being done bitwise mod 2          # ##############################################      set multiplicator $a      set multiplicand  $b      if {$a < $b} {          set multiplicator $b          set multiplicand  $a        }      # peasants multiplication      set result 0      while {$multiplicator != 0} {          if {[expr {$multiplicator&1}]} {              set result [gal_add_dec $result $multiplicand]            }          set multiplicand  [expr {$multiplicand  << 1}]          set multiplicator [expr {$multiplicator >> 1}]        }      set result    } proc gal_remainder_dec {a poly} { ####################### # performs a mod poly # #######################      set poly_power [get_two_power_dec $poly]      set a_power    [get_two_power_dec $a]      while {$a_power >= $poly_power} {          set pow_two [get_two_power_dec $a]          set trial $poly          while {$trial < $pow_two} {set trial [expr {$trial << 1}]}          set a [gal_add_dec $a $trial]          set a_power [get_two_power_dec $a]        }      return $a    } proc gal_mult_dec {poly a b} { ##################################################### # performs multiplication of two numbers in gf(2^n) # # a x b = polymult(a,b) mod poly                    # #####################################################      return [gal_remainder_dec [gal_poly_mult_dec $a $b] $poly]    } proc gal_find_gen_poly_dec {ord} { ########################################################## # finds generator polys in GF(2^n), generators are prime # # polynoms e.g. irreducible in GF(2^n)                   # ##########################################################      set max_find   [expr int(pow(2,$ord+1))]      set start_find [expr int(pow(2,$ord))]      set poly_list {}      set ret_list {}      # init with  3      lappend poly_list 3      set counter 4      while {$counter < $max_find} {          # only odd numbers          if {[expr {$counter&1}]} {              set prime 1              foreach elem $poly_list {                  if {[gal_remainder_dec $counter $elem] == 0} {                      set prime 0                      break                    }                }              if {$prime} {                  lappend poly_list $counter                  if {$counter >= $start_find} {                      lappend ret_list $counter                    }                }            }          incr counter        }      set ret_list    } proc gal_is_primitive_elem_dec {num poly} { ############################################################ # checks whether num is a primitive element in the GF(2^n) # # defined by poly. Aprimitive element generates all field  # # values with its powers (excluding 0)                     # ############################################################      set max_num [get_two_power_dec $poly]      if {$num >= $max_num} {return 0}      if {$num == 1} {return 0}      incr max_num -1      if {$max_num <= 0} {return 0}      set power_list {}      set power $num      lappend power_list $power      while {$power != 1} {          set power [gal_mult_dec $poly $power $num]          lappend power_list $power        }      if {[llength [lsort -integer -unique $power_list]] == $max_num} {return 1}      return 0    } proc gal_is_primitive_poly_dec {poly} { ###################################################################### # a polynom is primitive in GF(2^n)|poly if 2 is a primitive element # ######################################################################      return [gal_is_primitive_elem_dec 2 $poly]    } proc gal_get_generators_dec {poly} { ##################################################### # finds all generating elements of the GF(2^n)|poly # #####################################################      set max_num [get_two_power_dec $poly]      incr max_num -1      if {$max_num <= 0} {return}      set gen_list {}      for {set num 2} {$num < $max_num} {incr num} {          if {[gal_is_primitive_elem_dec $num $poly]} {              lappend gen_list $num            }        }      return $gen_list    } ################################################################################ # HELPER                                                                       # ################################################################################ proc get_two_power_dec {num} { ################################## # find power of 2 lower than num # ##################################      set result $num      set shifted $num      while {$shifted} {          set shifted [expr {$shifted >> 1}]          set result [expr {$result | $shifted}]        }      return [expr {$result ^ ($result >>1)}]    }

Anyone wanting to explore GF(2^n) can use this part, it is self-contained.

Why look-up tables?

In GF(whatever) the numbers are actually symbols representing polynomials, a multiplication in GF(whatever) is actually the result of : polymult(poly1, poly2) Modulo (generator polynom), that costs! (even on today's GHz machines)

That's why after finding one generator polynom and one generator element you build up look-up tables for exponentiation, logs and inverses, and use only these for heavy-duty calculations.

I would advise against using gal_find_gen_poly_dec for a polynom order >= 16; it takes ages to complete.

Lars H, 2008-02-14: What is that algorithm, anyway? Is it tabulating all irreducible polynomials, or what?

Jaf, 2008-02-14: Yes, it tabulates all irreducible polynomials up to the order given. It does this by checking the remainder of the polynomial being checked against all already-found irreducible polynomials. It is O(n^2). The remainder check does not use multiplications.

Lars H,2008-02-14:I can't help mentioning that there are tricks one can use to speed up the polymult operation. For very large n one should do some kind of fast Fourier transform to approach O(nlogn) complexity, but more interesting here are probably tricks that work below a given bound on n.

If the data bits are not packed tight in the integer used to encode the polynomial, then one can even use integer multiplication to do most of the work. For example, if we know that n<16 then it suffices to put the data at every fourth bit — this corresponds to using the binary digit expansion as a hex digit expansion. The following (rather corny) code works for n<=8 (main culprit is the binary conversions, but one also needs a 32-bit*32-bit product, hence the wide):

 proc poly_mult8 {a b} {
    binary scan [binary format cc $a $b] B8B8 a_spaced b_spaced
    set prod [expr ( wide(0x$a_spaced) * 0x$b_spaced ) & 0x111111111111111]
    binary scan [binary format B16 [format %016lx $prod]] S res
    return $res
 }

Without conversions, it would of course be much more efficient (less messy to brace the expression, for one) ...

Between the two extremes, one can split the polynomial into blocks to speed things up. Keeping a table of all products of two polynomials of degree <=3 is for example quite feasible — then one can do 4 bits in each step rather than 1 bit.


The encoder part:

  • Relies on the existence of an initialized GF(2^8)
  • Will not overwrite existing files
  • Output is OriginalFileName_coded_n (where n is the chunk number)
 proc init_coder {filename chunks erasures matrix_type} {
 #######################################################################
 # this function inits the coder, gal_state  has to exist upon calling #
 # the galois field MUST be 2^8 at the moment. The read/write  routines#
 # with arbitrary number of  bits don't  exist  yet. The 2^16 case has #
 # been left out  as the time to generate  the irreducible polynomials #
 # is very unsatisfying,  at least in this implementation of galois.tcl#
 #######################################################################
     global coder_state
     global gal_state

     ## encoding stuff
     # check that galois field has been initialised
     if {![info  exists gal_state]} { return 0 }
     # check that the field is 2^8
     if {$gal_state(max_elem) != 255} { return 0 }
     # check that the number of chunks permits a E matrix
     # TODO Check above
     if {$chunks   >= $gal_state(max_elem)} { return 0 }
     # check that number of erasures is not higher than n=max_elem-1
     # a vandermonde is invertible if it is a (n-1)x(n-1)
     # TODO Check above
     # if you REALLY want so many erasures: 100% more generated data , replicate
     # the filei, you'll be better off
     if {$erasures >= $chunks} { return 0 }
     # check matrix type for computed extra erasure chunks
     switch -exact -- $matrix_type {
         "vandermonde" {}
         default {
             puts "Sorry this matrix type ($matrix_type) is not implemented yet"
             return 0
           }
       }
     ## file stuff
     # input file exists
     if {![file exists $filename]} {return 0}
     # and is readeable for user
     if {[catch {open $filename r} fileptr]} {return 0}
     # file is open, configure for binary access
     fconfigure $fileptr -translation binary

     # fill state array, bookkeeping
     set coder_state(chunks) $chunks
     set coder_state(erasures) $erasures
     set coder_state(mat_type) $matrix_type
     # the encoding matrix
       # unit matrix part
     set coder_state(coder_matrix) [mat_unity_dec $chunks]
       # vandermonde part, TODO: rework this into a proc to allow at least
       # for a cauchy matrice
     for {set counter 1} {$counter <= $erasures} {incr counter} {
         set this_row {}
         set this_elem 1
         lappend this_row $this_elem
         for {set col_count 1} {$col_count < $chunks} {incr col_count} {
             set this_mult [expr $counter]
             set this_elem [mult_dec $this_elem $this_mult]
             lappend this_row $this_elem
           }
         lappend coder_state(coder_matrix) $this_row
       }
     # input file name
     set coder_state(filename) $filename
     # input file descriptor
     set coder_state(fileptr) $fileptr
     # file size
     set coder_state(size) [file size $filename]

     ## the idea is to construct a string that can be evalled later to
     ## convert the read bytes into the appropriate decimal values.
     # the value names to receive the bytes
     set vals {}
     for {set counter 0} {$counter < $chunks} {incr counter} {
         lappend vals val$counter
       }
     set coder_state(vals_names) $vals

     set coder_state(vals_vals) /
       [string map {"val" "$val"} [join $coder_state(vals_names)]]

     # the variable to receive read bytes
     set coder_state(bytes_read) ""

     # conversion string
     set conv [concat  binary scan {$coder_state(bytes_read)}]
     set conv [concat $conv [string repeat c1 $coder_state(chunks)]]
     set conv [concat $conv $coder_state(vals_names)]
     set coder_state(conv) $conv

     return 1
   }
 proc read_chunks {} {
 ############################################################################
 # reads the number of chunks specified in the coder_state(chunks) variable #
 # returns a list  containing  the  values  of  the  chunks  with  the most #
 # significant chunk at list 0                                              #
 ############################################################################
     global coder_state

     # coder must have been intialised
     if {![info  exists coder_state]} { return }
     # no eof reached
     if {[eof $coder_state(fileptr)]} { return }
     # read the data into coder_state(bytes_read)
     set coder_state(bytes_read) /
       [read $coder_state(fileptr) $coder_state(chunks)]
     # clean up before conversion
     foreach name $coder_state(vals_names) {catch {unset $name}}
     # convert the data
     set conversions [eval $coder_state(conv)]
     # make a list, either full or partial
     set subst_str $coder_state(vals_vals)
     if {$conversions != $coder_state(chunks)} {
         # split the subst_lst to extract fields, join result to have string
         set subst_str [join [lrange [split $subst_str] 0 [incr conversions -1]]]
       }
     # substitute string, make proper list
     set ret [split [subst $subst_str]]
     # transform to unsigned
     set num_elem [llength $ret]
     for {set idx 0} {$idx < $num_elem} {incr idx} {
         lset ret $idx [expr {[lindex $ret $idx] & 0Xff}]
       }

     return $ret
   }
 proc write_coded {} {
 ###################################################################
 # creates the output files, if  files  by  same name exist aborts #
 # writes the coder_state into each file, writes the stream number #
 # switches to binary mode and streams out the encoding results    #
 ###################################################################
     global coder_state
     global gal_state

     # coder must have been intialised
     if {![info  exists coder_state]} {return 0}
     # generate names for the output files
     set num_streams [expr $coder_state(chunks) + $coder_state(erasures)]
     set outfiles {}
     for {set index 0}  {$index < $num_streams} {incr index} {
         lappend outfiles "$coder_state(filename)_coded_${index}"
       }
     puts "will encode in: $outfiles"
     # check that files do not overwrite
     foreach name $outfiles {if {[file exists $name]} {return 0}}
     # open file channels
     set channels {}
     foreach name $outfiles {
         if {[catch {open $name w} fileptr]} {
             foreach chan $channels {close $chan}
             return 0
           }
         lappend channels $fileptr
       }
     # write ascii header, switch to binary for further writing
       # empty bytes_read just to be on the safe side
     set coder_state(bytes_read) ""
     #set state_list [array get coder_state]
     set state_list {}
     foreach idx {chunks erasures filename size} {
         lappend state_list $idx $coder_state($idx)
       }
     lappend state_list "poly" $gal_state(poly)
     lappend state_list "primitive" $gal_state(primitive)
     set counter 0
     foreach chan $channels {
         set this_list $state_list
         lappend this_list "code_row"
         lappend this_list [lindex $coder_state(coder_matrix) $counter]
         lappend this_list "stream" $counter
         puts $chan $this_list
         flush $chan
         fconfigure $chan -translation binary
         incr counter
       }
     # encode
     set mat [lrange $coder_state(coder_matrix) $coder_state(chunks) end]
     set chunks $coder_state(chunks)
     while {![eof $coder_state(fileptr)]} {
         set in_vect [read_chunks]
         while {[llength $in_vect] < $chunks} {lappend in_vect 0}
         set out_vect [concat $in_vect [mat_vect_mult_dec $mat $in_vect]]
         foreach chan $channels elem $out_vect {
             puts -nonewline $chan [binary format c $elem]
           }
       }
     # clean up
     foreach chan $channels {close $chan}
     return 1
   }
  • If you take a peek at the coded files you'll see that the first line is a plain text information line that gets gobbled by the decoder to initialize its own state.
  • Only the Vandermonde matrix type is implemented; I will implement a Cauchy variant so that we have more choices
  • You can ''pgp' your file first, then code it. As soon as I am satisfied with the codec, I'll implement an on the fly pgp in the encoder. I think there's a package somewhere....

The decoder part:

 proc init_decoder {file_list} {
 ####################################################################
 # initialises the decoder by reading the header lines of the files #
 ####################################################################
     global gal_state
     global decoder_state
     global tmp_arr
     global channel_list

     # file list is not empty
     if {![llength $file_list]} {return 0}
     # files exist
     foreach file_name $file_list {if {![file exists $file_name]} {return 0}}
     # files open
     set channel_list {}
     foreach file_name $file_list {
         if {[catch {open $file_name} chan]} {
             foreach chan $channel_list {close $chan}
             return 0
           }
         lappend channel_list $chan
       }

     # read in ascii data
     catch {unset file_info}
     foreach chan $channel_list {gets $chan file_info($chan)}
     # ascii data is always one line at beginning, switch to binary mode now
     foreach chan $channel_list {fconfigure $chan -translation binary}
     # check consistency
     catch {unset tmp_arr}
     foreach chan $channel_list {
         foreach {name val} $file_info($chan) {
             set tmp_arr(${chan}_$name) $val
           }
       }
     # streams and  code_rows are different
     set chunk_list {}
     foreach idx [array names tmp_arr "*stream"] {
         lappend chunk_list $tmp_arr($idx)
       }
     if {[llength $chunk_list] != [llength [lsort -unique $chunk_list]]} {
         foreach chan $channel_list {close $chan}
         puts "Encountered duplicate stream"
         return 0
       }
     set tmp_list {}
     foreach idx [array names tmp_arr "*code_row"] {
         lappend tmp_list [join $tmp_arr($idx) ""]
       }
     if {[llength $tmp_list] != [llength [lsort -unique $tmp_list]]} {
         foreach chan $channel_list {close $chan}
         puts "Encountered duplicated code row"
         return 0
       }
     # chunks, erasures, filename, size, poly and primitive must be the same
     set check_list [list chunks erasures filename size poly primitive]
     foreach check $check_list {
         set tmp_list {}
         foreach idx [array names tmp_arr "*$check"] {
             lappend tmp_list [join $tmp_arr($idx) ""]
           }
         if {[llength [lsort -unique $tmp_list]] != 1} {
             foreach chan $channel_list {close $chan}
             puts "Encountered inconsistency while checking: $check"
             return 0
           }
         set decoder_state($check) [lindex $tmp_list 0]
       }
     # check that enough chunks are there
     if {[llength $file_list] < $decoder_state(chunks)} {
         puts "Not enough chunks to restore data"
         foreach chan $channel_list {close $chan}
         return 0
       }
     # check whether we received the chunks that were used in the unity matrix
     # part of the coding matrix
     set decode_list {}
     set list_end [expr $decoder_state(chunks)-1]
     set temp_list [lrange [lsort -integer  $chunk_list] 0 $list_end]
     if {([lindex $temp_list 0]         == 0        ) && /
         ([lindex $temp_list $list_end] == $list_end)} {
         puts "Chunks from unity matrix available, will use multiplex"
         foreach chan $channel_list {
             lappend decode_list [list $chan $tmp_arr(${chan}_stream)]
           }
         set decode_list [lsort -integer -index 1 $decode_list]
         set decode_list [lrange $decode_list 0 $list_end]
         set decoder_list {}
         foreach  elem $decode_list {lappend decoder_list [lindex $elem 0]}
         unset decode_list
         mux $decoder_list
       } else {
         puts "At least one original chunk is missing, will use restore"
         set matrix {}
         set decoder_list {}
         foreach chan $channel_list {
             lappend decoder_list  $chan
             lappend matrix $tmp_arr(${chan}_code_row)
           }
         set decoder_list [lrange $decoder_list 0 $list_end]
         set matrix       [lrange $matrix       0 $list_end]
         init_gal_dec $decoder_state(poly) $decoder_state(primitive)
         puts "matrix: $matrix"
         set matrix [mat_invert_dec $matrix]
         puts "inverse: $matrix"
         restore $decoder_list $matrix
       }

     # files close
     foreach chan $channel_list {close $chan}
   }
 proc mux {chan_list} {
 ########################################################################
 # reads one byte at a time from the channels in chan_list sequentially #
 # and write them into the file given by decoder_state(filename)        #
 ########################################################################
     global decoder_state

     # prep output file
     set out_name $decoder_state(filename)_decoded
     puts "will write to $out_name"
     if {[file exists $out_name]} {puts "out file exists";return 0}
     if {[catch {open $out_name w} out_chan]} {puts "could not open";return 0}
     fconfigure $out_chan -translation binary
     # stream out until num bytes of original file is reached
     set out_counter 0
     while {1} {
         foreach chan $chan_list {
             puts -nonewline $out_chan [read $chan 1]
             incr out_counter
             if {$out_counter >= $decoder_state(size)} {
                 close $out_chan
                 return 1
               }
           }
       }
   }
 proc restore {chan_list matrix} {
 ################################################
 # The actual decoding stuff happens here       #
 # Given the channels and the decoding matrix   #
 # The bytes are read from the different chunks #
 # Multiplied with the matrix and shipped out   #
 ################################################
     global decoder_state

     # prep output file
     set out_name $decoder_state(filename)_decoded
     puts "will write to $out_name"
     if {[file exists $out_name]} {puts "out file exists";return 0}
     if {[catch {open $out_name w} out_chan]} {puts "could not open";return 0}
     fconfigure $out_chan -translation binary

     set out_counter 0
     while {1} {
         set vect {}
         foreach chan $chan_list {
             binary scan [read $chan 1] c1 byte
             lappend vect [expr {$byte & 0xff}]
           }
         set vect [mat_vect_mult_dec $matrix $vect]
         if {![llength $vect]} {return}
         foreach byte $vect {
             puts -nonewline $out_chan [binary format c $byte]
             incr out_counter
             if {$out_counter >= $decoder_state(size)} {
                 close $out_chan
                 return 1
               }
           }
       }

   }

A crude GUI:

 #!/usr/bin/env tclsh
 # packages
 package require Tk
 package require BWidget
 # sources, TODO these will be transformed into packages later
 #source galois_dec.tcl
 #source encoding.tcl
 #source decoder.tcl
 # GUI state array
 set gui_state(#) anchor
 set gui_state(field_order) 8
 set gui_state(irr_polys) {}
 set gui_state(polylistbox) ""
 set gui_state(primlabeltext) ""
 set gui_state(generatorlistbox) ""
 set gui_state(generators) {}
 set gui_state(poly) ""
 set gui_state(generator) ""
 set gui_state(fieldready) ""
 set gui_state(filetoencode) ""
 set gui_state(chunks) ""
 set gui_state(erasures) ""
 set gui_state(matrixtype) "vandermonde"
 set gui_state(coderready) ""
 set gui_state(filestodecode) {}
 set gui_state(filestodecodelistbox) ""
 # GUI helpers
 proc decode_files {} {
     global gui_state
     init_decoder $gui_state(filestodecode)
   }
 proc add_file_to_decode {} {
     global gui_state
     set thisfile [tk_getOpenFile -title "Choose File to Decode"]
     lappend gui_state(filestodecode) $thisfile
   }
 proc remove_file_to_decode {} {
     global gui_state
     set thisindex [$gui_state(filestodecodelistbox) curselection]
     if {$thisindex == ""} {return}
     $gui_state(filestodecodelistbox) delete $thisindex $thisindex
   }
 proc gui_init_coder {} {
     global gui_state
     set gui_state(coderready) ""
     if {$gui_state(filetoencode) == ""} {return 0}
     if {$gui_state(chunks)       == ""} {return 0}
     if {$gui_state(erasures)     == ""} {return 0}
     if {$gui_state(matrixtype)   == ""} {return 0}
     if {![string is integer $gui_state(chunks)  ]} {return 0}
     if {![string is integer $gui_state(erasures)]} {return 0}
     if {![init_coder $gui_state(filetoencode)/
                      $gui_state(chunks)      /
                      $gui_state(erasures)    /
                      $gui_state(matrixtype)] } {
         return 0
       }
     set gui_state(coderready) "Coder Initialised"
     return 1
   }
 proc get_file {} {
     global gui_state
     set gui_state(filetoencode) [tk_getOpenFile /
                                   -initialfile $gui_state(filetoencode) /
                                   -title "Choose File to Encode"]
     set gui_state(coderready) ""
   }
 proc init_field {} {
     global gui_state
     set gui_state(fieldready) ""
     set ready 0
     if {($gui_state(poly) != "") && ($gui_state(generator) != "")} {
         set ready [init_gal_dec $gui_state(poly) $gui_state(generator)]
       }
     if {$ready} {set gui_state(fieldready) "Field intialised"}
   }
 proc use_poly {} {
     global gui_state
     set index [$gui_state(polylistbox) curselection]
     if {$index != {}} {
         set gui_state(poly) [lindex $gui_state(irr_polys) $index]
       }
     set gui_state(fieldready) ""
     set gui_state(generator) ""
     set gui_state(generators) {}
   }
 proc use_gen {} {
     global gui_state
     set index [$gui_state(generatorlistbox) curselection]
     if {$index != {}} {
         set gui_state(generator) [lindex $gui_state(generators) $index]
       }
     set gui_state(fieldready) ""
   }
 proc get_irr_polys {} {
     global gui_state
     set gui_state(irr_polys) [gal_find_gen_poly_dec $gui_state(field_order)]
     $gui_state(polylistbox) selection clear 0 end
     $gui_state(polylistbox) selection set 0 0
     set gui_state(generators) {}
     set gui_state(generator) ""
     set gui_state(poly) ""
     set gui_state(primlabeltext) ""
     set gui_state(fieldready) ""
   }
 proc check_prim_poly {} {
     global gui_state
     set index [$gui_state(polylistbox) curselection]
     if {$index != {}} {
         set poly [lindex $gui_state(irr_polys) $index]
         set not ""
         if {![gal_is_primitive_poly_dec $poly]} { set not "not " }
         set gui_state(primlabeltext) ""
         append gui_state(primlabeltext) $poly " is " $not "primitive"
       }
   }
 proc get_gen_elems {} {
     global gui_state
     set index [$gui_state(polylistbox) curselection]
     if {$index != {}} {
         set poly [lindex $gui_state(irr_polys) $index]
         set gui_state(generators) [gal_get_generators_dec $poly]
       }
     $gui_state(generatorlistbox) selection clear 0 end
     $gui_state(generatorlistbox) selection set 0 0
     set gui_state(generator) ""
     set gui_state(fieldready) ""
   }
 #### prep notebook
 set nb [NoteBook .nb -side top]
 $nb insert 0 galois -text "Galois"
 $nb insert 1 encode -text "Encode"
 $nb insert 2 decode -text "Decode"

 ### notebook page: galois
 set page [$nb getframe galois]
 # field order
 set thisframe [frame $page.galorderframe]
   set thislabel [label $thisframe.galorderlabel -text "field order"]
   set thisentry [entry $thisframe.galorderent]
   $thisentry configure -width 4 -textvariable gui_state(field_order)
   pack $thisentry -side right
   pack $thislabel -side left
 pack $thisframe -side top -anchor w
 # calculate generator polys
 set thisbutton [button $page.searchirred -text "Find Irreducible Polynoms"]
   $thisbutton configure -command get_irr_polys
 pack $thisbutton -side top -anchor w
 # list generator polynoms
 set thisframe [frame $page.genpolyframe]
   set thislabel [label $thisframe.genpolylabel]
     $thislabel configure -text "Irreducible Polynoms" -anchor w
   pack $thislabel -side top -fill x -expand 1
   set scrollerframe [ScrolledWindow $thisframe.irredpolys]
     set thislistbox [listbox $scrollerframe.polylistbox]
       $thislistbox configure -listvariable gui_state(irr_polys)
       $thislistbox configure  -height 5 -selectmode single
       $scrollerframe setwidget $thislistbox
       set gui_state(polylistbox) $thislistbox
   pack $scrollerframe
 pack $thisframe -side top -anchor w
 # check if chosen polynom is primitive
 set thisbutton [button $page.primbutton -text "Check if Primitive"]
   $thisbutton configure -text "Check if Primitive"
   $thisbutton configure -command check_prim_poly
 pack $thisbutton -side top -anchor w
 set thislabel [label $page.prim_or_not]
   $thislabel configure -textvariable gui_state(primlabeltext) -anchor w
 pack $thislabel -side top -anchor w -fill x
 # select one polynom for use
 set thisbutton [button $page.usepoly -text "Use Selected Polynom"]
   $thisbutton configure -command use_poly
 pack $thisbutton -side top -anchor w
 set thislabel [label $page.polytouse -textvariable gui_state(poly)]
 pack $thislabel -side top -anchor w
 # get generator elements
 set thisbutton [button $page.getgenerators -text "Find Generator Elements"]
   $thisbutton configure -command get_gen_elems
 pack $thisbutton -side top -anchor w
 # list field generators
 set thisframe [frame $page.genframe]
   set thislabel [label $thisframe.genlylabel]
     $thislabel configure -text "Generators" -anchor w
   pack $thislabel -side top -fill x -expand 1
   set scrollerframe [ScrolledWindow $thisframe.generators]
     set thislistbox [listbox $scrollerframe.generatorlistbox]
       $thislistbox configure -listvariable gui_state(generators)
       $thislistbox configure  -height 5 -selectmode single
       $scrollerframe setwidget $thislistbox
       set gui_state(generatorlistbox) $thislistbox
   pack $scrollerframe
 pack $thisframe -side top -anchor w
 # select one generator element for use
 set thisbutton [button $page.usegen -text "Use Selected Generator"]
   $thisbutton configure -command use_gen
 pack $thisbutton -side top -anchor w
 set thislabel [label $page.gentouse -textvariable gui_state(generator)]
 pack $thislabel -side top -anchor w
 # initialise galois field
 set thisbutton [button $page.initgal -text "Use Poly. & Gen. to Init"]
   $thisbutton configure -command init_field
 pack $thisbutton -side top -anchor w
 set thislabel [label $page.fieldready -textvariable gui_state(fieldready)]
 pack $thislabel -side top -anchor w

 ### notebook page: encode
 set page [$nb getframe encode]
 # give user the possibility to use own poly
 set thislabel [label $page.polyentrylabel -text "Genereating Polynom"]
 pack $thislabel -side top -anchor w
 set thisentry [entry $page.polyentry]
   $thisentry configure -width 10 -textvariable gui_state(poly)
 pack $thisentry -side top -anchor w
 # give user the possibility to use own generator
 set thislabel [label $page.generatorelemlabel -text "Generator Element"]
 pack $thislabel -side top -anchor w
 set thisentry [entry $page.generatorelementry]
   $thisentry configure -width 10 -textvariable gui_state(generator)
 pack $thisentry -side top -anchor w
 # init field
 set thisbutton [button $page.initgal -text "Use Poly. & Gen. to Init"]
   $thisbutton configure -command init_field
 pack $thisbutton -side top -anchor w
 set thislabel [label $page.fieldready -textvariable gui_state(fieldready)]
 pack $thislabel -side top -anchor w
 # get filename to encode
 set thislabel [label $page.filenamelabel -text "File to Encode"]
 pack $thislabel -side top -anchor w
 set thisframe [frame $page.fileframe]
   set thisentry [entry $thisframe.filenameentry]
     $thisentry configure -width 14 -textvariable gui_state(filetoencode)
   pack $thisentry -side left
   set thisbutton [button $thisframe.filebrowse]
     $thisbutton configure -text "Browse" -command get_file
   pack $thisbutton -side right
 pack $thisframe -side top -fill x
 # init encoding
 set thisentry [LabelEntry $page.chunkentry]
   $thisentry configure -label "Chunks" -textvariable gui_state(chunks)
   $thisentry configure -width 5 -labelwidth 8
 pack $thisentry -side top -anchor w
 set thisentry [LabelEntry $page.erasureentry]
   $thisentry configure -label "Erasures" -textvariable gui_state(erasures)
   $thisentry configure -width 5 -labelwidth 8
 pack $thisentry -side top -anchor w
 set thisbutton [button $page.initcoder -text "Init Coder"]
   $thisbutton configure -command gui_init_coder
 pack $thisbutton -side top -anchor w
 set thislabel [label $page.coderready -textvariable gui_state(coderready)]
 pack $thislabel -side top -anchor w
 # write coded file
 set thisbutton [button $page.code -text "Write Coded"]
   $thisbutton configure -command write_coded
 pack $thisbutton -side top -anchor w

 ### notebook page: decode
 set page [$nb getframe decode]
 # get files to decode
 set thislabel [label $page.filelistlabel -text "Files to Decode"]
 pack $thislabel -side top -anchor w
 set scrollerframe [ScrolledWindow $page.filestodecodescroller]
   set thislistbox [listbox $scrollerframe.filestodecodelist]
     $thislistbox configure -listvariable gui_state(filestodecode)
     $thislistbox configure  -height 5 -selectmode single
     $scrollerframe setwidget $thislistbox
     set gui_state(filestodecodelistbox) $thislistbox
 pack $scrollerframe -side top -anchor w
 set thisframe [frame $page.addremoveframe]
   set thisbutton [button $thisframe.addfile]
     $thisbutton configure -text "Add File"
     $thisbutton configure -command add_file_to_decode
   pack $thisbutton -side left -fill x
   set thisbutton [button $thisframe.removefile]
     $thisbutton configure -text "Remove File"
     $thisbutton configure -command remove_file_to_decode
   pack $thisbutton -side right -fill x
 pack $thisframe -side top -anchor w
 # decode
 set thisbutton [button $page.decode]
   $thisbutton configure -text "Decode"
   $thisbutton configure -command "decode_files"
 pack $thisbutton -side top -anchor w

 # start show
 pack $nb -fill both -expand 1
 $nb compute_size
 $nb raise galois

That's it.


Usage:

  • Galois-tab: Galois playground, useful to find irreducible polynoms and to have a look at the generating elements of the field. Finding the generating elements can take a while.
  • Encode-tab: The impatient could use 285 as generating polynom, and 2 as generator element. The number of chunks means how many chunks you would like to generate from your original file, the number of erasures will generate one additional chunk per erasure permitted, see example above: 4 original chunks + 2 erasures = 6 chunks all in all
  • Decode-tab: Just choose the files you want to use to restore the original file and press decode.

PS:

1) The code is a bit lengthy, if you find this disturbing in the wiki, please tell me.

2) My commenting style comes from the fact that I never know when I'm going to get interrupted by my son who quite vehemently demands his baby-drinking-bottle, I write as many comments as possible, then fill the code in after the milk tour. I need the comments as extended memory of what I intended to do.

Cheers.

 

 

你可能感兴趣的:(eMatrix TCL/MQL)