JMM即为JAVA 内存模型(java memory model)。因为在不同的硬件生产商和不同的操作系统下,内存的访问逻辑有一定的差异,结果就是当你的代码在某个系统环境下运行良好,并且线程安全,但是换了个系统就出现各种问题。Java内存模型,就是为了屏蔽系统和硬件的差异,让一套代码在不同平台下能到达相同的访问结果。JMM从java 5开始的JSR-133发布后,已经成熟和完善起来。
JMM规定了内存主要划分为主内存和工作内存两种。此处的主内存和工作内存跟JVM内存划分(堆、栈、方法区)是在不同的层次上进行的,如果非要对应起来,主内存对应的是Java堆中的对象实例部分,工作内存对应的是栈中的部分区域,从更底层的来说,主内存对应的是硬件的物理内存,工作内存对应的是寄存器和高速缓存。
JVM在设计时候考虑到,如果JAVA线程每次读取和写入变量都直接操作主内存,对性能影响比较大,所以每条线程拥有各自的工作内存,工作内存中的变量是主内存中的一份拷贝,线程对变量的读取和写入,直接在工作内存中操作,而不能直接去操作主内存中的变量。但是这样就会出现一个问题,当一个线程修改了自己工作内存中变量,对其他线程是不可见的,会导致线程不安全的问题。因为JMM制定了一套标准来保证开发者在编写多线程程序的时候,能够控制什么时候内存会被同步给其他线程。
内存交互操作有8种,虚拟机实现必须保证每一个操作都是原子的,不可在分的(对于double和long类型的变量来说,load、store、read和write操作在某些平台上允许例外)
JMM对这八种指令的使用,制定了如下规则:
JMM对这八种操作规则和对volatile的一些特殊规则就能确定哪里操作是线程安全,哪些操作是线程不安全的了。但是这些规则实在复杂,很难在实践中直接分析。所以一般我们也不会通过上述规则进行分析。更多的时候,使用java的happen-before规则来进行分析。
原子性:例如上面八项操作,在操作系统里面是不可分割的单元。被synchronized关键字或其他锁包裹起来的操作也可以认为是原子的。从一个线程观察另外一个线程的时候,看到的都是一个个原子性的操作。
synchronized (this) {
a=1;
b=2;
}
例如一个线程观察另外一个线程执行上面的代码,只能看到a、b都被赋值成功结果,或者a、b都尚未被赋值的结果。
可见性:每个工作线程都有自己的工作内存,所以当某个线程修改完某个变量之后,在其他的线程中,未必能观察到该变量已经被修改。volatile关键字要求被修改之后的变量要求立即更新到主内存,每次使用前从主内存处进行读取。因此volatile可以保证可见性。除了volatile以外,synchronized和final也能实现可见性。synchronized保证unlock之前必须先把变量刷新回主内存。final修饰的字段在构造器中一旦完成初始化,并且构造器没有this逸出,那么其他线程就能看到final字段的值。
有序性:java的有序性跟线程相关。如果在线程内部观察,会发现当前线程的一切操作都是有序的。如果在线程的外部来观察的话,会发现线程的所有操作都是无序的。因为JMM的工作内存和主内存之间存在延迟,而且java会对一些指令进行重新排序。volatile和synchronized可以保证程序的有序性,很多程序员只理解这两个关键字的执行互斥,而没有很好的理解到volatile和synchronized也能保证指令不进行重排序。
volatile的一些特殊规则
被final修饰的变量,相比普通变量,内存语义有一些不同。具体如下:
public class FinalConstructor {
final int a;
int b;
static FinalConstructor finalConstructor;
public FinalConstructor() {
a = 1;
b = 2;
}
public static void write() {
finalConstructor = new FinalConstructor();
}
public static void read() {
FinalConstructor constructor = finalConstructor;
int A = constructor.a;
int B = constructor.b;
}
}
假设现在有线程A执行FinalConstructor.write()方法,线程B执行FinalConstructor.read()方法。
对应上述的Final的第一条规则,因为JMM禁止把Final域的写重排序到构造器的外部,而对普通变量没有这种限制,所以变量A=1,而变量B可能会等于2(构造完成),也有可能等于0(第11行代码被重排序到构造器的外部)。
对应上述的Final的第二条规则,如果constructor的引用不为null,A必然为1,要么constructor为null,抛出空指针异常。保证读final域之前,一定会先读该对象的引用。但是普通对象就没有这种规则。
(上述的Final规则反复测试,遗憾的是我并没有能模拟出来普通变量不能正常构造的结果)
在常规的开发中,如果我们通过上述规则来分析一个并发程序是否安全,估计脑壳会很疼。因为更多时候,我们是分析一个并发程序是否安全,其实都依赖Happen-Before原则进行分析。Happen-Before被翻译成先行发生原则,意思就是当A操作先行发生于B操作,则在发生B操作的时候,操作A产生的影响能被B观察到,“影响”包括修改了内存中的共享变量的值、发送了消息、调用了方法等。
Happen-Before的规则有以下几条
以上就是Happen-Before中的规则。通过这些条件的判定,仍然很难判断一个线程是否能安全执行,毕竟在我们的时候线程安全多数依赖于工具类的安全性来保证。想提高自己对线程是否安全的判断能力,必然需要理解所使用的框架或者工具的实现,并积累线程安全的经验。