本文参考自:
https://blog.csdn.net/liyuanbhu/article/details/7882789#commentsedit
博主的文章写的太好了,我这里仅仅摘抄几个重要的知识点作为记录:
CRC校验(循环冗余校验)是数据通讯中最常采用的校验方式。在嵌入式软件开发中,经常要用到CRC 算法对各种数据进行校验。因此,掌握基本的CRC算法应是嵌入式程序员的基本技能。
其实,在网上有一篇介绍CRC 算法的非常好的文章,作者是Ross Williams,题目叫:“A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS”。
所谓通讯过程的校验是指在通讯数据后加上一些附加信息,通过这些附加信息来判断接收到的数据是否和发送出的数据相同。比如说RS232串行通讯可以设置奇偶校验位,所谓奇偶校验就是在发送的每一个字节后都加上一位,使得每个字节中1的个数为奇数个或偶数个。比如我们要发送的字节是0x1a,二进制表示为0001 1010。
采用奇校验,则在数据后补上个0,数据变为0001 1010 0,数据中1的个数为奇数个(3个)
采用偶校验,则在数据后补上个1,数据变为0001 1010 1,数据中1的个数为偶数个(4个)
接收方通过计算数据中1个数是否满足奇偶性来确定数据是否有错。
奇偶校验的缺点也很明显,首先,它对错误的检测概率大约只有50%。也就是只有一半的错误它能够检测出来。另外,每传输一个字节都要附加一位校验位,对传输效率的影响很大。因此,在高速数据通讯中很少采用奇偶校验。奇偶校验优点也很明显,它很简单,因此可以用硬件来实现,这样可以减少软件的负担。因此,奇偶校验也被广泛的应用着。
奇偶校验就先介绍到这来,之所以从奇偶校验说起,是因为这种校验方式最简单,而且后面将会知道奇偶校验其实就是CRC 校验的一种(CRC-1)。
另一种常见的校验方式是累加和校验。所谓累加和校验实现方式有很多种,最常用的一种是在一次通讯数据包的最后加入一个字节的校验数据。这个字节内容为前面数据包中全部数据的忽略进位的按字节累加和。比如下面的例子:
我们要传输的信息为: 6、23、2
加上校验和后的数据包:6、23、4、31
这里 31 为前三个字节的校验和。接收方收到全部数据后对前三个数据进行同样的累加计算,如果累加和与最后一个字节相同的话就认为传输的数据没有错误。
累加和校验由于实现起来非常简单,也被广泛的采用。但是这种校验方式的检错能力也比较一般,对于单字节的校验和大概有1/256 的概率将原本是错误的通讯数据误判为正确数据。之所以这里介绍这种校验,是因为CRC校验在传输数据的形式上与累加和校验是相同的,都可以表示为:通讯数据 校验字节(也可能是多个字节)
CRC 算法的基本思想是将传输的数据当做一个位数很长的数。将这个数除以另一个数。得到的余数作为校验数据附加到原数据后面。
最常用的几种生成多项式如下:
CRC8=X8+X5+X4+X0
CRC-CCITT=X16+X12+X5+X0
CRC16=X16+X15+X2+X0
CRC12=X12+X11+X3+X2+X0
CRC32=X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+X0
有一点要特别注意,文献中提到的生成多项式经常会说到多项式的位宽(Width,简记为W),这个位宽不是多项式对应的二进制数的位数,而是位数减1。比如CRC8中用到的位宽为8的生成多项式,其实对应得二进制数有九位:100110001。另外一点,多项式表示和二进制表示都很繁琐,交流起来不方便,因此,文献中多用16进制简写法来表示,因为生成多项式的最高位肯定为1,最高位的位置由位宽可知,故在简记式中,将最高的1统一去掉了,如CRC32的生成多项式简记为04C11DB7实际上表示的是104C11DB7。当然,这样简记除了方便外,在编程计算时也有它的用处。
对于上面的例子,位宽为4(W=4),按照CRC算法的要求,计算前要在原始数据后填上W个0,也就是4个0。
假设我们的生成多项式为:100110001(简记为0x31),也就是CRC-8
则计算步骤如下:
(1) 将CRC寄存器(8-bits,比生成多项式少1bit)赋初值0
(2) 在待传输信息流后面加入8个0
(3) While (数据未处理完)
(4) Begin
(5) If (CRC寄存器首位是1)
(6) reg = reg XOR 0x31
(7) CRC寄存器左移一位,读入一个新的数据于CRC寄存器的0 bit的位置。
(8) End
(9) CRC寄存器就是我们所要求的余数。
实际上,真正的CRC 计算通常与上面描述的还有些出入。这是因为这种最基本的CRC除法有个很明显的缺陷,就是数据流的开头添加一些0并不影响最后校验字的结果。这个问题很让人恼火啊,因此真正应用的CRC 算法基本都在原始的CRC算法的基础上做了些小的改动。
所谓的改动,也就是增加了两个概念,第一个是“余数初始值”,第二个是“结果异或值”。
所谓的“余数初始值”就是在计算CRC值的开始,给CRC寄存器一个初始值。“结果异或值”是在其余计算完成后将CRC寄存器的值在与这个值进行一下异或操作作为最后的校验值。
加入这些变形后,常见的算法描述形式就成了这个样子了:
(1) 设置CRC寄存器,并给其赋值为“余数初始值”。
(2) 将数据的第一个8-bit字符与CRC寄存器进行异或,并把结果存入CRC寄存器。
(3) CRC寄存器向右移一位,MSB补零,移出并检查LSB。
(4) 如果LSB为0,重复第三步;若LSB为1,CRC寄存器与0x31相异或。
(5) 重复第3与第4步直到8次移位全部完成。此时一个8-bit数据处理完毕。
(6) 重复第2至第5步直到所有数据全部处理完成。
(7) 最终CRC寄存器的内容与“结果异或值”进行或非操作后即为CRC值。
示例性的C代码如下所示,因为效率很低,项目中如对计算时间有要求应该避免采用这样的代码。
#include
#include
#include
#include
#include
#include
#include
#define POLY 0x1021
/**
* Calculating CRC-16 in 'C'
* @para addr, start of data
* @para num, length of data
* @para crc, incoming CRC
*/
uint16_t crc16(unsigned char *addr, int num, uint16_t crc)
{
int i;
for (; num > 0; num--) /* Step through bytes in memory */
{
crc = crc ^ (*addr++ << 8); /* Fetch byte from memory, XOR into CRC top byte*/
for (i = 0; i < 8; i++) /* Prepare to rotate 8 bits */
{
if (crc & 0x8000) /* b15 is set... */
crc = (crc << 1) ^ POLY; /* rotate and XOR with polynomic */
else /* b15 is clear... */
crc <<= 1; /* just rotate */
} /* Loop for 8 bits */
crc &= 0xFFFF; /* Ensure CRC remains 16-bit value */
} /* Loop until num=0 */
return(crc); /* Return updated CRC */
}
int main (int argc , char* argv[])
{
unsigned char data1[] = {'1', '2', '3', '4', '5', '6', '7', '8', '9'};
unsigned char data2[] = {'5', '6', '7', '8', '9'};
unsigned short c1, c2;
c1 = crc16(data1, 9, 0xffff);
c2 = crc16(data1, 4, 0xffff);
c2 = crc16(data2, 5, c2);
printf("%04x\n", c1);
printf("%04x\n", c2);
}