The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i]
(i
= 1, ..., K
) is the i
-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122+42+22+22+12, or 112+62+22+22+22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1,a2,⋯,aK } is said to be larger than { b1,b2,⋯,bK } if there exists 1≤L≤K such that ai=bi for i
If there is no solution, simple output Impossible
.
169 5 2
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
169 167 3
Impossible
#include
#include
#include
#include
#include
#include
using namespace std;
int n,k,p,maxFacSum=-1;
//fac记录0^p,1^p...,ans存放最优底数序列,temp存放递归中的临时底数序列
vector fac,ans,temp;
int power(int x){
int ans=1;
for(int i=0;imaxFacSum){
ans=temp;
maxFacSum=facSum;
}
return ;
}
if(sum>n || nowK>k) return;//这种情况下不会产生答案,直接返回
if(index-1>=0){
temp.push_back(index);
DFS(index,nowK+1,sum+fac[index],facSum+index);
temp.pop_back();
DFS(index-1,nowK,sum,facSum);
}
}
int main(){
scanf("%d%d%d",&n,&k,&p);
init();
DFS(fac.size()-1,0,0,0);
if(maxFacSum==-1) printf("Impossible\n");
else{
printf("%d = %d^%d",n,ans[0],p);
for(int i=1;i