计算机视觉基础-图像处理(下)- Task02 学习笔记

LBP特征描述算子-人脸检测

简介:LBP指局部二值模式(Local Binary Pattern),是一种用来描述图像局部特征的算子,具有灰度不变性和旋转不变性等显著优点。LBP常应用于人脸识别和目标检测中,在OpenCV中有使用LBP特征进行人脸识别的接口,也有用LBP特征训练目标检测分类器的方法,OpenCV实现了LBP特征的计算,但没有提供一个单独的计算LBP特征的接口。也就是说OpenCV中使用了LBP算法,但是没有提供函数接口。

LBP解释:原始的LBP算子定义在像素33的邻域内,以邻域中心像素为阈值,相邻的8个像素的灰度值与邻域中心的像素值进行比较,若周围像素大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,33邻域内的8个点经过比较可产生8为二进制数,将这8位二进制数依次排列形成一个二进制数字,这个二进制数字就是中心像素的LBP值,LBP值共有28种可能,因此LBP值有256种可能。中心像素的LBP值反映了该像素周围区域的纹理信息。
等价模式:当某个局部二进制模式所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该局部二进制模式所对应的二进制就称为一个等价模式。
例如:10000000——只包含一次转变,10000001——包含两次转变,10100000——包含三次转变。256种8bit的编码中转变数不超过2的编码,共有58种。
人脸检测流程
人脸检测过程采用多尺度滑窗搜索方式,每个尺度通过一定步长截取大小为20x20的窗口,然后将窗口放到分类器中进行是不是人脸的判决,如果是人脸则该窗口通过所有分类器;反之,会在某一级分类器被排除。
计算机视觉基础-图像处理(下)- Task02 学习笔记_第1张图片
基于OpenCV的实现

#coding:utf-8
import cv2 as cv

# 读取原始图像
img= cv.imread('./me.jpg')
#face_detect = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

face_detect = cv.CascadeClassifier("lbpcascade_frontalface_improved.xml")
# 检测人脸
# 灰度处理
gray = cv.cvtColor(img, code=cv.COLOR_BGR2GRAY)

# 检查人脸 按照1.1倍放到 周围最小像素为5
face_zone = face_detect.detectMultiScale(gray, scaleFactor = 2, minNeighbors = 2) # maxSize = (55,55)
print ('识别人脸的信息:\n',face_zone)

# 绘制矩形和圆形检测人脸
for x, y, w, h in face_zone:
    # 绘制矩形人脸区域
    cv.rectangle(img, pt1 = (x, y), pt2 = (x+w, y+h), color = [0,0,255], thickness=2)
    # 绘制圆形人脸区域 radius表示半径
    cv.circle(img, center = (x + w//2, y + h//2), radius = w//2, color = [0,255,0], thickness = 2)

# 设置图片可以手动调节大小
cv.namedWindow("Easmount-CSDN", 0)

# 显示图片
cv.imshow("Easmount-CSDN", img)

# 等待显示 设置任意键退出程序
cv.waitKey(0)
cv.destroyAllWindows()

你可能感兴趣的:(opencv,opencv,计算机视觉)