- Hadoop---(6)Sqoop(数据传输)
Mr Cao
sqoop大数据
6.SqoopSqoop是一个用于hadoop数据和结构化数据之间转换的工具。全称SQL-TO-HADOOP.它可以把hadoop数据,包括hive和hbase存储的数据转化为结构化数据也就是数据库的数据,也可以把关系型数据库数据转化为hadoop数据这些转换操作全是通过Hadoop的MapTask来完成的,并不会涉及到Reduce操作。这是因为我们只是进行数据的拷贝,并不会对数据进行处理或者计算
- hbase无法建表:org.apache.hadoop.hbase.PleaseHoldException: Master is initializing
magicchu
CDHHBASE大数据
1.环境:cdh6.2.12.现象:hbaseshell进去后,list命令执行正常,执行建表语句后报错:ERROR:org.apache.hadoop.hbase.PleaseHoldException:Masterisinitializing提示master正在初始化中,查看master日志:WARNorg.apache.hadoop.hbase.master.HMaster:hbase:na
- Hive 整合 Spark 全教程 (Hive on Spark)
字节全栈_rJF
hivesparkhadoop
hadoop.proxyuser.luanhao.groups*hadoop.proxyuser.luanhao.groups*2)HDFS配置文件配置hdfs-site.xmldfs.namenode.http-addressBigdata00:9870dfs.namenode.secondary.http-addressBigdata00:9868dfs.replication13)YARN配
- spark和python的区别_Spark入门(Python)
weixin_39934257
spark和python的区别
Spark是第一个脱胎于该转变的快速、通用分布式计算范式,并且很快流行起来。Spark使用函数式编程范式扩展了MapReduce模型以支持更多计算类型,可以涵盖广泛的工作流,这些工作流之前被实现为Hadoop之上的特殊系统。Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速(就如同使用Python解释器,与集群进行交互一样)。缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理
- spark python入门_python pyspark入门篇
weixin_39686634
sparkpython入门
一.环境介绍:1.安装jdk7以上2.python2.7.113.IDEpycharm4.package:spark-1.6.0-bin-hadoop2.6.tar.gz二.Setup1.解压spark-1.6.0-bin-hadoop2.6.tar.gz到目录D:\spark-1.6.0-bin-hadoop2.62.配置环境变量Path,添加D:\spark-1.6.0-bin-hadoop2
- 安装HBase-2.4.12 (hadoop3.3.1)
不饿同学
大数据hbasebigdatahadoop
1.下载https://www.apache.org/dyn/closer.lua/hbase/2.4.12/hbase-2.4.12-bin.tar.gz节点角色配置节点MasterZooKeeperRegionServernode001yesyesyesnode002backupyesyesnode003noyesyes2.解压下载的文件,并切换到新创建的目录。(base)[root@node
- Hadoop--HA架构详解
娘子,出来看上帝
HadoopHadoop大数据HA
一、HA架构工作背景HDFS集群中的nameNode存在单点故障因素。对于只有一个nameNode工作的集群来说,一旦nameNode出现意外情况,会导致整个集群无法工作,直到nameNode重新启动。为了解决上述问题,Hadoop给出了高容错,高可用的HA方案:一个HDFS集群至少存在两个nameNode,一个nameNode处在active(主)状态,其他nameNode处在standby(备
- Hadoop HA 架构
weixin_30569033
shell大数据
为什么要用集群?企业里面,多台机器伪分布式每一个角色都是一个进程HDFS:NNSNNDNYARN:RMNM大数据所有组件,都是主从架构master-slaveHDFS读写请求都是先到NN节点,但是,HBase读写请求不是经过master,建表和删除表是需要经过masterNN节点挂了,就不能提供对外服务(-put,-get)需要配置两个NN节点(实时的,任何时刻只有一台active对外,另外一台是
- 【hadoop学习之路】Hive HQL 语句实现查询
新世纪debug战士
hadoop学习之路hive
目录表数据表1students_data.txt表2course.txt实验步骤结论表数据表1students_data.txt21434,Sara,F,21,20,73,classC41443,Mary,M,19,30,90,classA43333,Dery,F,20,40,85,classB45454,Mary,F,22,10,91,classA14634,Henry,M,18,50,56,c
- HDFS总结
ChenJieYaYa
Hadoophdfshadoopbigdata
基于前面的学习与配置,相信对于HDFS有了一定的了解HDFS概述1.什么是HDFSHadoopDistributedFileSystem:分步式文件系统HDFS是Hadoop体系中数据存储管理的基础HDFS是基于流数据模式访问和处理超大文件的需求而开发的1.流式数据:将数据序列化为字节流来存储,这样不会破坏文件的结构和内容,而且字节流直接存储在磁盘上,可以分片或分块2.当超大规模的文件本身就已经超
- 11 Spark面试真题
TTXS123456789ABC
#Sparkspark面试大数据
11Spark大厂面试真题1.通常来说,Spark与MapReduce相比,Spark运行效率更高。请说明效率更高来源于Spark内置的哪些机制?2.hadoop和spark使用场景?3.spark如何保证宕机迅速恢复?4.hadoop和spark的相同点和不同点?5.RDD持久化原理?6.checkpoint检查点机制?7.checkpoint和持久化机制的区别?8.RDD机制理解吗?9.Spa
- 【详细讲解】hive优化
songqq27
大数据hive
1、开启本地模式大多数的HadoopJob是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。用户可以通过设置hive.exec.mode.local.auto的值
- 大数据毕业设计hadoop+spark+hive豆瓣图书数据分析可视化大屏 豆瓣图书爬虫 图书推荐系统
qq_79856539
javawebjava大数据hadoop课程设计
系统总体目标基于Spark的个性化书籍推荐系统是一种基于大数据技术的智能推荐系统,它可以根据用户的历史行为和偏好,为用户提供个性化的书籍推荐。该系统采用Spark技术,可以实现大数据的实时处理,从而提高推荐系统的准确性和可靠性。此外,该系统还可以根据用户的习惯和偏好,提供更加个性化的书籍推荐,从而满足用户的需求。系统的使用者包含普通用户和管理员两类,普通用户是系统的主要服务对象,主流人群是经常查看
- python 分布式集群_Python搭建Spark分布式集群环境
小国阁下
python分布式集群
前言ApacheSpark是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark最大的特点就是快,可比HadoopMapReduce的处理速度快100倍。本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。本教程采用Spark2.0以上版本(比如Spark2.0.2、Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2
- Hadoop错误: put: Lease mismatch on ... by DFSClient_NONMAPREDUCE_-499992815_1.... 学习总结
星月情缘02
ETL技术Hadoophdfs租约hadoop错误
错误总结分享:使用了hadoop挺长时间了,多数人应该很熟悉它的特点了吧,但是今天突然遇到个错误,从来没见过,一时自己也想不到是什么原因,就在网上查了一些资料,得到了解决的办法,再次分享一下。过程:使用kettle数据清洗工具在进行同步任务的过程中,最后数据是被加载到hdfs的,这里用shell脚本实现,hdfsdfs-put-r/hdfs的目录。结果程序执行到这一步的时候报错了。错误描述就是文章
- Hadoop3.3.4伪分布式环境搭建
凡许真
分布式hadoop伪分布式hadoop3.3.4
文章目录前言一、准备1.下载Hadoop2.配置环境变量3.配置免密二、Hadoop配置1.hadoop-env.sh2.hdfs-site.xml3.core-site.xml4.mapred-site.xml5.yarn-site.xml三、格式化四、启动五、访问web页面前言hadoop学习——伪分布式环境——普通用户搭建一、准备1.下载Hadoop2.配置环境变量vi~/.bash_pro
- Hadoop HA 格式化NameNode 顺序
凡许真
hadoop大数据分布式HA
文章目录前言一、启动JournalNode二、格式化NameNode1.执行格式化命令2.启动namenode3.执行格式化命令4.启动namenode其他前言记录搭建HadoopHA架构时格式化namenode问题一、启动JournalNode分别启动JournalNode,命令如下hadoop-daemon.shstartjournalnode二、格式化NameNode1.执行格式化命令找其中
- Hive存储系统全面测试报告
蚂蚁质量
软件测试测试用例功能测试
引言在大数据时代,数据存储和处理技术的重要性日益凸显。ApacheHive作为一个基于Hadoop的数据仓库工具,因其能够提供类SQL查询功能(HiveQL)而广受欢迎。Hive的设计初衷是为了简化大数据集的查询和管理,它允许用户通过简单的SQL语句来操作存储在Hadoop分布式文件系统(HDFS)上的大规模数据集。然而,随着数据量的激增和业务需求的多样化,Hive存储系统的功能、性能和安全性面临
- window10下编译hadoop报错:Failed to execute goal org.apache.maven.plugins:maven-antrun-plugin:1.7:
huangxgc
hadoophadoopwindows
Windows10下buildhadoop2.7.3报错:Failedtoexecutegoalorg.apache.maven.plugins:maven-antrun-plugin:1.7:[ERROR]Failedtoexecutegoalorg.apache.maven.plugins:maven-antrun-plugin:1.7:run(dist)onprojecthadoop-hdf
- 图文详解 MapReduce on YARN
Shockang
大数据技术体系大数据mapreduceyarn
前言本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见1000个问题搞定大数据技术体系正文权威版本——《Hadoop权威指南第3版》1.作业提交MRrunJob从RM获取新的作业ID作业客户端检査作业的输出说明,计算输入分片并将作业资源(包括作业JAR、配置和分片信息)复制到HDFS。通过调用R
- 深入MapReduce——从MRv1到Yarn
黄雪超
大数据基础#深入MapReducemapreduce大数据hadoop
引入我们前面篇章有提到,和MapReduce的论文不太一样。在Hadoop1.0实现里,每一个MapReduce的任务并没有一个独立的master进程,而是直接让调度系统承担了所有的worker的master的角色,这就是Hadoop1.0里的JobTracker。在Hadoop1.0里,MapReduce论文里面的worker就是TaskTracker,用来执行map和reduce的任务。而分配
- Hadoop学习笔记 --- YARN执行流程与工作原理
杨鑫newlfe
数据仓库大数据挖掘与大数据应用案例YARNHadoop大数据资源调度数据仓库
一、YARN简述首先介绍一下YARN在Hadoop2.0版本引进的资源管理系统,直接从MapReduceV1演化而来(由于引擎的功能缺陷);原因是将MapReduce1中的JobTracker的资源管理和作业调度两个功能分开,分别由ResourceManager和ApplicationMaster进行实现;ResourceManager:负责整个集群的资源管理和调度ApplicationMaste
- 【深入浅出 Yarn 架构与实现】1-1 设计理念与基本架构
大数据王小皮
深入浅出Yarn架构与实现架构hadoop大数据yarnjava
一、Yarn产生的背景Hadoop2之前是由HDFS和MR组成的,HDFS负责存储,MR负责计算。一)MRv1的问题耦合度高:MR中的jobTracker同时负责资源管理和作业控制两个功能,互相制约。可靠性差:管理节点是单机的,有单点故障的问题。资源利用率低:基于slot的资源分配模型。机器会将资源划分成若干相同大小的slot,并划定哪些是mapslot、哪些是reduceslot。无法支持多种计
- 【YARN】yarn 基础知识整理——hadoop1.0与hadoop2.0区别、yarn总结
时间的美景
HadoopYarnhadoophadoop1hadoop2大数据
文章目录1.hadoop1.0和hadoop2.0区别1.1hadoop1.01.1.1HDFS1.1.2Mapreduce1.2hadoop2.01.2.1HDFS1.2.2Yarn/MapReduce22.Yarn2.1Yarn(YetAnotherResourceNegotiator)概述2.2Yarn的优点2.3Yarn重要概念2.3.1ResourceManager2.3.2NodeMa
- 搭建Hadoop与Hive环境
达达玲玲
hadoophive大数据
当搭建Hadoop与Hive环境时,以下是每个步骤的详细操作说明:1.安装并配置CentOS7操作系统:-下载CentOS7ISO镜像文件,并通过虚拟机或物理机安装CentOS7操作系统。-在安装过程中,为系统分配必要的网络、用户和权限。2.安装Java开发环境:-下载适合您的系统的JavaJDK版本。-使用命令或GUI工具安装JavaJDK。-配置JAVA_HOME环境变量:-打开终端,输入以下
- 大数据技术之MapReduce
wespten
HadoopHiveSpark大数据安全大数据mapreducehadoop
一、MapReduce概述1、MapReduce简介MapReduce是一个分布式运算程序的编程框架,是基于Hadoop的数据分析计算的核心框架。MapReduce处理过程分为两个阶段:Map和Reduce。Map负责把一个任务分解成多个任务,Reduce负责把分解后多任务处理的结果汇总。2、MapReduce优缺点MapReduce优点:MapReduce易于编程:它简单的实现一些接口,就可以完
- anaconda中pyspark_自学大数据——9 Anaconda安装与使用pyspark
步六孤陆
首先从Anaconda官网上下载Anaconda。一、解压安装包sudobashAnaconda3-2020.07-Linux-x86_64.shchown-Rhadoop:hadoop/opt/anaconda/vi/etc/profileexportANACONDA_HOME=/opt/anacondaexportPATH=$PATH:$ANACONDA_HOME/bin:source/etc
- PySpark数据处理过程简析
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介PySpark是ApacheSpark的PythonAPI,可以用Python进行分布式数据处理,它在内存中利用了ApacheHadoopYARN资源调度框架对数据进行并行处理。PySpark可以直接使用Hadoop文件系统、HDFS来存储数据,也可以通过S3、GCS、ADLS等云存储平台保存数据。因此,在不同的数据源之间移动数据时,只需要复制一次数据就可以完成
- kafka开启kerberos
蘑菇丁
debian运维
一、基本环境准备创建票据创建Kerberos主体(Principal):使用kadmin.local或kadmin命令为Zookeeper和Kafka服务创建Kerberos主体。例如:注意有几台机器创建几个kadmin.local-q"addprinc-randkeyzookeeper/
[email protected]"kadmin.local-q"addprinc-rand
- ranger-kms安装
蘑菇丁
eclipsejavaide
默认已安装ranger-admin和mysql服务。Ranger组件服务默认都在/opt/bigdata.test/core/ranger目录下安装。解压安装包[hadoop~]$cd/opt/ranger[hadoop@ranger]$tar-xzvfranger-2.1.0-kms.tar.gz[hadoop@xranger]$mvranger-2.1.0-kmsranger/ranger-k
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。