Professor Dumbledore is helping Harry destroy the Horcruxes. He went to Gaunt Shack as he suspected a Horcrux to be present there. He saw Marvolo Gaunt's Ring and identified it as a Horcrux. Although he destroyed it, he is still affected by its curse. Professor Snape is helping Dumbledore remove the curse. For this, he wants to give Dumbledore exactly x drops of the potion he made.
Value of x is calculated as maximum of p·ai + q·aj + r·ak for given p, q, r and array a1, a2, ... an such that 1 ≤ i ≤ j ≤ k ≤ n. Help Snape find the value of x. Do note that the value of x may be negative.
Input
First line of input contains 4 integers n, p, q, r ( - 109 ≤ p, q, r ≤ 109, 1 ≤ n ≤ 105).
Next line of input contains n space separated integers a1, a2, ... an( - 109 ≤ ai ≤ 109).
Output
Output a single integer the maximum value of p·ai + q·aj + r·ak that can be obtained provided 1 ≤ i ≤ j ≤ k ≤ n.
Examples
Input
5 1 2 3 1 2 3 4 5
Output
30
Input
5 1 2 -3 -1 -2 -3 -4 -5
Output
12
Note
In the first sample case, we can take i = j = k = 5, thus making the answer as 1·5 + 2·5 + 3·5 = 30.
In second sample case, selecting i = j = 1 and k = 5 gives the answer 12.
题目大意,给定一个序列,求p·ai + q·aj + r·ak最大,但要满足1 ≤ i ≤ j ≤ k ≤ n.这个的限制条件。所以我们可以用线段树维护区间最大最小值,扫一遍j,当p>=0的时候,查询(1,i)的最大值乘p,小于0时,查询(I,N)的最小值乘P,r同理。这样得到的值一定是最大的。最后取所有结果的最大值即可。
AC代码
#include
#include
#include
typedef long long ll;
using namespace std;
#define maxn 100000+100
#define INF 10000000000
ll ma[maxn<<2],mi[maxn<<2],a[maxn];
ll x;
void push(int rt)
{
ma[rt]=max(ma[rt<<1],ma[rt<<1|1]);
mi[rt]=min(mi[rt<<1],mi[rt<<1|1]);
}
void build(int l,int r,int rt)
{
if(l==r)
{
scanf("%I64d",&x);
ma[rt]=x;
mi[rt]=x;
a[l]=x;
return ;
}
int mid=(l+r)/2;
build(l,mid,rt<<1);
build(mid+1,r,rt<<1|1);
push(rt);
}
ll querya(int l,int r,int rt,int L,int R)
{
if(L<=l&&r<=R)
{
return ma[rt];
}
ll m=-INF;
int mid=(r+l)/2;
if(L<=mid)m=max(querya(l,mid,rt<<1,L,R),m);
if(R>mid)m=max(querya(mid+1,r,rt<<1|1,L,R),m);
return m;
}
ll queryi(int l,int r,int rt,int L,int R)
{
if(L<=l&&r<=R)
{
return mi[rt];
}
ll m=INF;
int mid=(r+l)/2;
if(L<=mid)m=min(queryi(l,mid,rt<<1,L,R),m);
if(R>mid)m=min(queryi(mid+1,r,rt<<1|1,L,R),m);
return m;
}
typedef long long ll;
int main()
{
ll n,p,q,r,ans=0,sum;
scanf("%I64d%I64d%I64d%I64d",&n,&p,&q,&r);
build(1,n,1);
for(int i=1;i<=n;i++)
{
ans=a[i]*q;
if(p>=0)ans+=querya(1,n,1,1,i)*p;
else ans+=queryi(1,n,1,1,i)*p;
//cout<=0)ans+=querya(1,n,1,i,n)*r;
else ans+=queryi(1,n,1,i,n)*r;
// cout<
看了别人的题解后发现可以用DP处理区间最大值,好像非常简洁Orz。。。
dp[0][i]是前i个p*a[i]的最大值,
dp[1][i]是在dp[0][i]的基础上加上q*a[i]的最大值,这样可以保证j>=i;
dp[2][i]是在dp[1][i]的基础上加上r*a[i]的最大值,这样可以保证k>=j;
太强了,比赛时完全想不到这种解法。
#include
#include
#include
typedef long long ll;
using namespace std;
#define maxn 100000+100
const ll INF = 8e18;
const int N = 1e5 + 10;
ll dp[3][N];
int a[N];
int main()
{
ll p,q,r,n;
cin>>n>>p>>q>>r;
for(int i=1;i<=n;i++)
{
scanf("%I64d",&a[i]);
}
dp[0][0]=-INF;
dp[1][0]=-INF;
dp[2][0]=-INF;
for(int i=1;i<=n;i++)
{
dp[0][i]=max(dp[0][i-1],p*a[i]);
dp[1][i]=max(dp[1][i-1],dp[0][i]+q*a[i]);
dp[2][i]=max(dp[2][i-1],dp[1][i]+r*a[i]);
}
cout<