洛谷【图论2-2】最短路

目录

  • P1119
  • P3371 单源最短路径
  • 使用Dijkstra的邻接表表示

P1119

题目:https://www.luogu.com.cn/problem/P1119

#include
using namespace std;
const int maxn = 300;

int n,m;
int a[maxn];
int G[maxn][maxn];
void Floyd(int k){
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			if(G[i][j]>G[i][k]+G[k][j]){
				G[i][j] = G[i][k]+G[k][j];
			}
		}
	}
	return;
}
int main(){
	scanf("%d %d",&n,&m);
	for(int i =0;i<n;i++){
		scanf("%d",&a[i]);
	}
	for(int i =0;i<n;i++){
		for(int j=0;j<n;j++){
			if(j==i) G[i][j] = 0;
			else G[i][j] = 1e9;//初始化不可达 
		}
	}
	int u,v,w;
	for(int i=0;i<m;i++){
		scanf("%d %d %d",&u,&v,&w);
		G[u][v] = G[v][u] = w;//双向 
	}
	int q;
	scanf("%d",&q);//询问数
	int t;
	int index =0; 
	for(int i =0;i<q;i++){
		scanf("%d %d %d",&u,&v,&t);
		while(a[index]<=t && index<n){
			Floyd(index);//用index号村庄进行更新距离 
			index++;
		}
		if(a[u]>t ||a[v]>t) printf("-1\n");
		else{
			if(G[u][v]==1e9) printf("-1\n");
			else printf("%d\n",G[u][v]);
		}
	}
	return 0;
}

P3371 单源最短路径

#include
using namespace std;
const int maxn = 100010;
const int INF = 1e10;
struct node{
	int v,w;
	node(int vv,int ww){
		v=vv;
		w=ww;
	}
};
int n,m,s;
int dis[maxn];
vector<node> adj[maxn];
bool vis[maxn] = {false};
int num[maxn];//入队次数 

void SPFA(){
	memset(vis,0,sizeof(vis));
	fill(dis,dis+maxn,INF);
	memset(num,0,sizeof(num));
	queue<int> q;
	q.push(s);
	vis[s] = true;
	num[s]++;
	dis[s] = 0;
	while(!q.empty()){
		int u = q.front();
		q.pop();
		vis[u]=false;//出队 
		for(int j = 0;j<adj[u].size();j++){
			int v = adj[u][j].v;
			int d = adj[u][j].w;
			if(dis[u]+d<dis[v]){
				dis[v] = dis[u]+d;
				if(vis[v]==false){
					q.push(v);
					vis[v]=true;//入队
					num[v]++;
					if(num[v]>=n) return; 
				}
			}
		}
	}
	return;
}

int main(){
	scanf("%d%d%d",&n,&m,&s);
	int u,v,w;
	for(int i =0;i<m;i++){
		scanf("%d%d%d",&u,&v,&w);
		adj[u].push_back(node(v,w));
	}
	SPFA();
	for(int i =1;i<=n;i++){
		if(i != n)
			printf("%d ",dis[i]);
		else
			printf("%d\n",dis[i]);
	}
	return 0;
}

使用Dijkstra的邻接表表示

struct node{
	int v,dis;//目标点和边权 
	node(int vv,int d){
		v = vv;
		dis = d;
	}
};
int n,m,s;//n个点 m条边 起点s 
vector<node> G[maxn];
int ds[maxn];
bool vis[maxn] = {false};//标记数组 
//priority_queue q;
void dijkstra(){
	fill(ds,ds+maxn,INF);
	ds[s] = 0;
	for(int i =0;i<n;i++){
		int u =-1,MIN=INF;
		for(int j=0;j<n;j++){
			if(vis[j]==false&&ds[j]<MIN){
				u = j;
				MIN=ds[j];
			}
		}
		if(u==-1) return;
		vis[u]= true;
		for(int j =0;j<G[u].size();j++){
			int v = G[u][j].v;
			if(vis[v]==false&&G[u][j].dis+ds[u]<ds[v]){
				ds[v] = G[u][j].dis+ds[u];
			}
		}
	}
}
int main(){
	scanf("%d %d %d",&n,&m,&s);
	int u,v,w;
	for(int i =0;i<m;i++){
		scanf("%d %d %d",&u,&v,&w);
		G[u].push_back(node(v,w));
	}
	dijkstra();
	for(int i =1;i<=n;i++){
		if(i != n)
			printf("%d ",ds[i]);
		else
			printf("%d\n",ds[i]);
	}
	return 0;
}

你可能感兴趣的:(刷题)