1902年获胜策略已由美国数学家C.L.Bouton分析完成,用到的是二进制和平衡状态概念。其结论是:
对于n堆石子,第i (1<=i<=n)堆石子的个数是Xi,当且仅当X1 XOR X2 XOR……Xn=0时该状态为必败状态。
两个定理如下:
定理1]:对于任何一个S态(异或不等于0),总能从一堆火柴中取出若干个使之成为T态。
证明:
若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态,
c = A(1) xor A(2) xor … xor A(n) > 0;
把c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。
那么我们把x = A(t) xor c,则得到x < A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).而
A(1) xor A(2) xor … xor x xor … xor A(n)
= A(1) xor A(2) xor … xor A(t) xor c xor … xor A(n)
= A(1) xor A(2) xor… xor A(n) xor A(1) xor A(2) xor … xor A(n)= 0
这就是说从A(t)堆中取出 A(t) - x 根火柴后状态就会从S态变为T态。证毕
定理2]:T态,取任何一堆的若干根,都将成为S态。
证明:用反证法试试。
若
c = A(1) xor A(2) xor … xor A(i) xor … xor A(n) = 0;
c' = A(1) xor A(2) xor … xor A(i') xor c xor … xor A(n) = 0;
则有
c xor c' = A(1) xor A(2) xor … xor A(i) xor … xor A(n) xor A(1) xor A(2) xor … xor A(i') xor c xor … xor A(n) = A(i) xor A(i') =0
进而推出A(i) = A(i'),这与已知矛盾。所以命题得证。
代码:
#include
int main()
{
int m;
while(scanf("%d",&m)!=EOF)
{
int a,result=0;
for(int i=0;i {
scanf("%d",&a);
result=result^a;
}
if(result)
printf("Yes\n");
else printf("No\n");
}
return 0;
}