python/sympy求解矩阵方程

sympy版本:1.2

假设求解矩阵方程

AX=A+2X A X = A + 2 X

其中
A=411212303 A = ( 4 2 3 1 1 0 − 1 2 3 )

求解之前对矩阵方程化简为
(A2E)X=A ( A − 2 E ) X = A


B=(A2E) B = ( A − 2 E )

使用qtconsole输入下面程序进行求解


In [26]: from sympy  import *

In [27]: from sympy.abc import *

In [28]: A=Matrix([[4,2,3],[1,1,0],[-1,2,3]])

In [29]: A
Out[29]: 
Matrix([
[ 4, 2, 3],
[ 1, 1, 0],
[-1, 2, 3]])

In [30]: B=A-2*diag(1,1,1)

In [31]: B
Out[31]: 
Matrix([
[ 2,  2, 3],
[ 1, -1, 0],
[-1,  2, 1]])

In [32]: B.inv()*A
Out[32]: 
Matrix([
[ 3, -8, -6],
[ 2, -9, -6],
[-2, 12,  9]])

将结果验证一下:

In [38]: X=B.inv()*A

In [39]: X
Out[39]: 
Matrix([
[ 3, -8, -6],
[ 2, -9, -6],
[-2, 12,  9]])

In [40]: A*X-A-2*X
Out[40]: 
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])

求解矩阵方程过程中注意的问题是左乘还是右乘问题,在此例中是B.inv()*A ,如果矩阵方程变为

XA=A+2X X A = A + 2 X

那么求解结果为:

In [35]: X=A*B.inv()

In [36]: X
Out[36]: 
Matrix([
[ 3, -8, -6],
[ 2, -9, -6],
[-2, 12,  9]])

将结果验证一下:

X=A*B.inv()

X
Out[36]: 
Matrix([
[ 3, -8, -6],
[ 2, -9, -6],
[-2, 12,  9]])

X*A-A-2*X
Out[37]: 
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])

你可能感兴趣的:(Python,Math)