poj2135(*最小费用最大流)

/*
translation:
    给出一张图,求从1~n再从n~1的最短路径是多少?注意同一条路径不能走两次!
solution:
    最小费用最大流
    这个问题可以转化为求2条从1~n不相交的路径,进而就是直接求从1~n的流量为2的最小费用流。
note:
    * 本质上是求从1~n的流量为2的最小费用流
    # 不能直接用两次dijkstra来求。(将第一次走过的路删掉再跑第二次)
    研究问题模型的时候别被题意牵着走,要看出本质的模型。
*/
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
const int maxn = 1000 + 5;
const int INF = 0x3f3f3f3f;

typedef pair P;
struct Edge
{
    int to, cap, cost, rev;
    Edge(int to_, int cap_, int cost_, int rev_):to(to_),cap(cap_),cost(cost_),rev(rev_){}
};
vector G[maxn];
int V, n, m;
int h[maxn], dist[maxn], prevv[maxn], preve[maxn];

void add_edge(int from, int to, int cap, int cost)
{
    G[from].push_back(Edge(to, cap, cost, G[to].size()));
    G[to].push_back(Edge(from, 0, -cost, G[from].size()-1));
}

int min_cost_flow(int s, int t, int f)
{
    int res = 0;
    memset(h, 0, sizeof(h));
    while(f > 0) {
        priority_queue, greater

> pq; fill(dist, dist + V, INF); dist[s] = 0; pq.push(P(0, s)); while(!pq.empty()) { P p = pq.top(); pq.pop(); int v = p.second; if(dist[v] < p.first) continue; for(int i = 0; i < G[v].size(); i++) { Edge& e = G[v][i]; if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) { dist[e.to] = dist[v] + e.cost + h[v] - h[e.to]; prevv[e.to] = v; preve[e.to] = i; pq.push(P(dist[e.to], e.to)); } } } if(dist[t] == INF) return -1; for(int v = 0; v < V; v++) h[v] += dist[v]; int d = f; for(int v = t; v != s; v = prevv[v]) { d = min(d, G[prevv[v]][preve[v]].cap); } f -= d; res += d * h[t]; for(int v = t; v != s; v = prevv[v]) { Edge& e = G[prevv[v]][preve[v]]; e.cap -= d; G[v][e.rev].cap += d; } } return res; } int main() { //freopen("in.txt", "r", stdin); while(~scanf("%d%d", &n, &m)) { for(int i = 0; i < maxn; i++) G[i].clear(); int u, v, c; for(int i = 0; i < m; i++) { scanf("%d%d%d", &u, &v, &c); add_edge(u - 1, v - 1, 1, c); add_edge(v - 1, u - 1, 1, c); } int s = 0, t = n - 1; V = n; printf("%d\n", min_cost_flow(s, t, 2)); } return 0; }


你可能感兴趣的:(=====图=====,网络流(最小费用最大流))