Palindrome
Description
A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.
As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome. Input
Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.
Output
Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.
Sample Input Sample Output Source
IOI 2000
|
卡内存,可以开 short 数组以节省空间。
// Version 1
#include
#include
using namespace std;
short getLcs(const string& a, const string& b)
{
size_t n = a.length(), m = b.length();
short** dp = new short*[n + 1];
for (int i = 0; i <= n; i++)
{
dp[i] = new short[m + 1];
for (int j = 0; j <= m; j++) dp[i][j] = 0;
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
dp[i][j] = a[i - 1] == b[j - 1] ? dp[i - 1][j - 1] + 1 : max(dp[i - 1][j], dp[i][j - 1]);
return dp[n][m];
}
int main()
{
int n;
cin >> n;
string a;
cin >> a;
string b(a.rbegin(), a.rend());
cout << a.length() - getLcs(a, b) << endl;
return 0;
}
可以使用滚动数组节省空间。
// Version 2
#include
#include
using namespace std;
int getLcs(const string& a, const string& b)
{
size_t n = a.length(), m = b.length();
int** dp = new int*[2];
for (int i = 0; i < 2; i++)
{
dp[i] = new int[m + 1];
for (int j = 0; j <= m; j++) dp[i][j] = 0;
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
dp[i & 1][j] = a[i - 1] == b[j - 1] ? dp[(i + 1) & 1][j - 1] + 1 : max(dp[(i + 1) & 1][j], dp[i & 1][j - 1]);
return dp[n & 1][m];
}
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("input.txt", "r", stdin);
#endif
int n;
cin >> n;
string a;
cin >> a;
string b(a.rbegin(), a.rend());
cout << a.length() - getLcs(a, b) << endl;
return 0;
}