遍历二叉树的神级方法(Morris遍历)

通常,实现二叉树的前序(preorder)、中序(inorder)、后序(postorder)遍历有两个常用的方法:一是递归(recursive),二是使用栈实现的迭代版本(stack+iterative)。这两种方法都是O(n)的空间复杂度(递归本身占用stack空间或者用户自定义的stack),所以不满足要求。Morris Traversal方法可以做到这两点,与前两种方法的不同在于该方法只需要O(1)空间,而且同样可以在O(n)时间内完成。

一、中序遍历

步骤:

  1. 如果当前节点的左孩子为空,则输出当前节点并将其右孩子作为当前节点。

  2. 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点。

    a) 如果前驱节点的右孩子为空,将它的右孩子设置为当前节点。当前节点更新为当前节点的左孩子。

    b) 如果前驱节点的右孩子为当前节点,将它的右孩子重新设为空(恢复树的形状)。输出当前节点。当前节点更新为当前节点的右孩子。

  3. 重复以上1、2直到当前节点为空。

图示:

下图为每一步迭代的结果(从左至右,从上到下),cur代表当前节点,深色节点表示该节点已输出。

遍历二叉树的神级方法(Morris遍历)_第1张图片

二、前序遍历

前序遍历与中序遍历相似,代码上只有一行不同,不同就在于输出的顺序。 
步骤:

  1. 如果当前节点的左孩子为空,则输出当前节点并将其右孩子作为当前节点。

  2. 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点。

    a) 如果前驱节点的右孩子为空,将它的右孩子设置为当前节点。输出当前节点(在这里输出,这是与中序遍历唯一一点不同)。当前节点更新为当前节点的左孩子。

    b) 如果前驱节点的右孩子为当前节点,将它的右孩子重新设为空。当前节点更新为当前节点的右孩子。

  3. 重复以上1、2直到当前节点为空。

图示: 
遍历二叉树的神级方法(Morris遍历)_第2张图片

三、后序遍历

后续遍历稍显复杂,需要建立一个临时节点dump,令其左孩子是root。并且还需要一个子过程,就是倒序输出某两个节点之间路径上的各个节点。

步骤:

当前节点设置为临时节点dump。

  1. 如果当前节点的左孩子为空,则将其右孩子作为当前节点。

  2. 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点。

    a) 如果前驱节点的右孩子为空,将它的右孩子设置为当前节点。当前节点更新为当前节点的左孩子。

    b) 如果前驱节点的右孩子为当前节点,将它的右孩子重新设为空。倒序输出从当前节点的左孩子到该前驱节点这条路径上的所有节点。当前节点更新为当前节点的右孩子。

  3. 重复以上1、2直到当前节点为空。 
    图示:

遍历二叉树的神级方法(Morris遍历)_第3张图片

三、完整代码如下

//遍历二叉树的神级方法 时间复杂度为O(N),空间复杂度为O(1)


public class MorrisTraversal {
    
    //二叉树节点的定义
	public static class Node {
		public int value;
		Node left;
		Node right;

		public Node(int data) {
			this.value = data;
		}
	}
   //Morris中序遍历	
	public static void morrisIn(Node head) {
		if (head == null) {
			return;
		}
		Node cur1 = head;
		Node cur2 = null;
		while (cur1 != null) {
			cur2 = cur1.left;
			if (cur2 != null) {
				while (cur2.right != null && cur2.right != cur1) {
					cur2 = cur2.right;
				}
				if (cur2.right == null) {
					cur2.right = cur1;
					cur1 = cur1.left;
					continue;
				} else {
					cur2.right = null;
				}
			}
			System.out.print(cur1.value + " ");
			cur1 = cur1.right;
		}
		System.out.println();
	}
  //Morris先序遍历
	public static void morrisPre(Node head) {
		if (head == null) {
			return;
		}
		Node cur1 = head;
		Node cur2 = null;
		while (cur1 != null) {
			cur2 = cur1.left;
			if (cur2 != null) {
				while (cur2.right != null && cur2.right != cur1) {
					cur2 = cur2.right;
				}
				if (cur2.right == null) {
					cur2.right = cur1;
					System.out.print(cur1.value + " ");
					cur1 = cur1.left;
					continue;
				} else {
					cur2.right = null;
				}
			} else {
				System.out.print(cur1.value + " ");
			}
			cur1 = cur1.right;
		}
		System.out.println();
	}
  //Morris后序遍历
	public static void morrisPos(Node head) {
		if (head == null) {
			return;
		}
		Node cur1 = head;
		Node cur2 = null;
		while (cur1 != null) {
			cur2 = cur1.left;
			if (cur2 != null) {
				while (cur2.right != null && cur2.right != cur1) {
					cur2 = cur2.right;
				}
				if (cur2.right == null) {
					cur2.right = cur1;
					cur1 = cur1.left;
					continue;
				} else {
					cur2.right = null;
					printEdge(cur1.left);
				}
			}
			cur1 = cur1.right;
		}
		printEdge(head);
		System.out.println();
	}

	public static void printEdge(Node head) {
		Node tail = reverseEdge(head);
		Node cur = tail;
		while (cur != null) {
			System.out.print(cur.value + " ");
			cur = cur.right;
		}
		reverseEdge(tail);
	}

	public static Node reverseEdge(Node from) {
		Node pre = null;
		Node next = null;
		while (from != null) {
			next = from.right;
			from.right = pre;
			pre = from;
			from = next;
		}
		return pre;
	}

	// for test -- print tree(直观地打印二叉树)
	public static void printTree(Node head) {
		System.out.println("Binary Tree:");
		printInOrder(head, 0, "H", 17);
		System.out.println();
	}

	public static void printInOrder(Node head, int height, String to, int len) {
		if (head == null) {
			return;
		}
		printInOrder(head.right, height + 1, "v", len);
		String val = to + head.value + to;
		int lenM = val.length();
		int lenL = (len - lenM) / 2;
		int lenR = len - lenM - lenL;
		val = getSpace(lenL) + val + getSpace(lenR);
		System.out.println(getSpace(height * len) + val);
		printInOrder(head.left, height + 1, "^", len);
	}

	public static String getSpace(int num) {
		String space = " ";
		StringBuffer buf = new StringBuffer("");
		for (int i = 0; i < num; i++) {
			buf.append(space);
		}
		return buf.toString();
	}

	public static void main(String[] args) {
		Node head = new Node(4);
		head.left = new Node(2);
		head.right = new Node(6);
		head.left.left = new Node(1);
		head.left.right = new Node(3);
		head.right.left = new Node(5);
		head.right.right = new Node(7);
		printTree(head);
		morrisIn(head);   //中序
		morrisPre(head);  //先序
		morrisPos(head);  //后序
		printTree(head);

	}

}
遍历二叉树的神级方法(Morris遍历)_第4张图片


你可能感兴趣的:(手撕算法题,遍历,二叉树,Morris遍历)