题目如下:
Given a string, you are supposed to output the length of the longest symmetric sub-string. For example, given "Is PAT&TAP symmetric?", the longest symmetric sub-string is "s PAT&TAP s", hence you must output 11.
Input Specification:
Each input file contains one test case which gives a non-empty string of length no more than 1000.
Output Specification:
For each test case, simply print the maximum length in a line.
Sample Input:Is PAT&TAP symmetric?Sample Output:
11
题目要求判断最长的回文,有两种思路可供选择。
思路一,从两头进行判断,定义两个指针start_index和end_index分别指向头部和尾部,首先固定start_index,让end_index从最后一个元素向前遍历,直到碰到start_index,其间对start_index到end_index的范围进行回文判断,回文判断的规则很简单,如果start和end指向的元素一样,回文长度length=2,然后start+1,end-1,继续比较,如果符合则继续+2,直到start
注意一个问题,为了能输入空格,使用getline(cin,str)来输入字符串。
代码如下:
#include
#include
using namespace std;
string str;
int isRevese(int s, int e){
int length = 1;
while(s < e){
if(str[s] != str[e]) return 1;
s++;
e--;
if(length == 1) length = 2;
else length += 2;
}
if(length != 1 && s == e) length++;
return length;
}
int main()
{
getline(cin,str);
int start_index = 0;
int end_index = str.length() - 1;
int max_length = -1;
int len = 0;
for(start_index = 0; start_index < str.length(); start_index++){
for(end_index = str.length() - 1; end_index >= start_index; end_index--){
len = isRevese(start_index,end_index);
if(len > max_length){
max_length = len;
}
}
}
cout << max_length << endl;
return 0;
}
思路二,采用中心枚举法,以每个字符为中心向两端枚举,这个方法最大的问题在于枚举时对于形如abba的处理十分棘手,因为无论列举哪个b,都不能找到以b为中心的回文,而事实上abba就是回文。
这里我看到了sunbaigui的巧妙解法,他把所有的字符前面都加一个前导-1,这样通过以-1为中心枚举就可以得到正确的回文了,例如abba变为-1a-1b-1b-1a,通过中间的-1,得到了整个序列,这时候的回文长度是正确长度的2倍,只需要除以2即可得到正确结果。
这里直接贴的是sunbaigui的代码,欢迎去到他的博客。
#include
#include
#include
#define Max 10000
int dp[2*Max+1];
char str[Max];
int mmax(int a, int b)
{
if(a > b) return a;
else return b;
}
int main()
{
while(gets(str))
{
//memset(dp, -1, sizeof(dp));
int len = strlen(str);
//insert special character into str, must not appeared in str
std::vector magic;
for(int i = 0; i < len; ++i)
{
magic.push_back(-1);//special character
magic.push_back(str[i]);//character to int
}
magic.push_back(-1);
//enumerate center point for magic vector
len = (int)magic.size();
int max = 1;
for(int i = 1; i < len; ++i)
{
int l, r;
int step = 1;
for(l = i-1, r = i+1; l >= 0 && r < len; l--, r++)
{
if(magic[l] != magic[r])
break;
step += 2;
}
max = mmax(max, step);
}
printf("%d\n", max/2);
}
return 0;
}