光流法简介
https://blog.csdn.net/qq_41368247/article/details/82562165
基于金字塔分层的LK光流
https://blog.csdn.net/sgfmby1994/article/details/68489944
import numpy as np
import cv2
cap = cv2.VideoCapture('./data/mv1.mp4')
# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# Parameters for lucas kanade optical flow
#maxLevel 为使用的图像金字塔层数
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
cv2.namedWindow('frame', cv2.WINDOW_NORMAL)
while(1):
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate optical flow 能够获取点的新位置
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# draw the tracks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
img = cv2.add(frame,mask)
cv2.imshow('frame',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import cv2
import numpy as np
prev = cv2.imread('./data/prev.jpg')
now = cv2.imread('./data/now.jpg')
# 角点检测的参数
feature_params = dict(maxCorners=100,
qualityLevel=0.3,
minDistance=7,
blockSize=7)
# 光流法参数
# maxLevel 未使用的图像金字塔层数(金字塔在前面说了是为了解决速度过快)
lk_params = dict(winSize=(15, 15),
maxLevel=2,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 创建随机生成的颜色
color = np.random.randint(0, 255, (100, 3))
color = np.int0(color)
# 获得角点
prev_gray = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(prev_gray, mask=None, **feature_params)
# print(p0)
cornors = np.int0(p0) # 将浮点数转化为整数
# 创建掩码
mask = np.zeros_like(prev)
print(mask)
# 绘制角点
# i = 0
# for cornor in cornors:
# x,y = cornor.ravel()
# cv2.circle(prev,(x,y),1,color[i].tolist(),10)
# i += 1
# 将后面的图片也转化为灰度图
now_gray = cv2.cvtColor(now, cv2.COLOR_BGR2GRAY)
# cv2.imshow('now', now_gray)
# 通过光流算法计算出之前的角点下一帧的位置
p1, st, err = cv2.calcOpticalFlowPyrLK(prev_gray, now_gray, p0, None, **lk_params)
# 选择有效的角点坐标
good_new = p1[st==1]
good_old = p0[st==1]
# 绘制光流
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
frame = cv2.circle(now,(a,b),5,color[i].tolist(),-1)
img = cv2.add(frame,mask)
cv2.imshow('frame', prev)
cv2.waitKey(200)
# cv2.imshow('now', now)
cv2.imshow('frame',img)
# prev_gray[p0] == [255,255,255]
# cv2.imshow('prev',prev)
cv2.waitKey(0)
import cv2
import numpy as np
cap = cv2.VideoCapture("./data/mv1.mp4")
ret, frame1 = cap.read()
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
hsv = np.zeros_like(frame1)
hsv[...,1] = 255
while(1):
ret, frame2 = cap.read()
next = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
#将直角坐标转化为极坐标
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
hsv[...,0] = ang*180/np.pi/2
hsv[...,2] = cv2.normalize(mag,None,0,255,cv2.NORM_MINMAX)
rgb = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR)
cv2.imshow('frame2',rgb)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
elif k == ord('s'):
cv2.imwrite('opticalfb.png',frame2)
cv2.imwrite('opticalhsv.png',rgb)
prvs = next
cap.release()
cv2.destroyAllWindows()
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import cv2
import numpy as np
prev = cv2.imread('./data/prev.jpg')
now = cv2.imread('./data/now.jpg')
prev_gray = cv2.cvtColor(prev,cv2.COLOR_BGR2GRAY)
hsv = np.zeros_like(prev)
hsv[...,1] = 255
# print(hsv)
# cv2.imshow('frame', hsv)
# cv2.waitKey(0)
now_gray = cv2.cvtColor(now, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(prev_gray,now_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
hsv[...,0] = ang*180/np.pi/2
hsv[...,2] = cv2.normalize(mag,None,0,255,cv2.NORM_MINMAX)
rgb = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR)
cv2.imshow('frame2',rgb)
cv2.waitKey(0)