Disruptor 学习

Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易。这个系统是建立在JVM平台上,其核心是一个业务逻辑处理器,它能够在一个线程里每秒处理6百万订单。业务逻辑处理器完全是运行在内存中,使用事件源驱动方式。业务逻辑处理器的核心是Disruptor。
Disruptor它是一个开源的并发框架,并获得2011 Duke’s 程序框架创新奖,能够在无锁的情况下实现网络的Queue并发操作。
Disruptor是一个高性能的异步处理框架,或者可以认为是最快的消息框架(轻量的JMS),也可以认为是一个观察者模式的实现,或者事件监听模式的实现。

在Disruptor中,我们想实现hello world 需要如下几步骤:
第一:建立一个Event类
第二:建立一个工厂Event类,用于创建Event类实例对象
第三:需要有一个监听事件类,用于处理数据(Event类)
第四:我们需要进行测试代码编写。实例化Disruptor实例,配置一系列参数。然后我们对Disruptor实例绑定监听事件类,接受并处理数据。
第五:在Disruptor中,真正存储数据的核心叫做RingBuffer,我们通过Disruptor实例拿到它,然后把数据生产出来,把数据加入到RingBuffer的实例对象中即可。
Event类:数据封装类

public class LongEvent {

	private Long value;

	public Long getValue() {
		return value;
	}

	public void setValue(Long value) {
		this.value = value;
	}
	
}

工厂Event类:实现EventFactory<>接口的实现类

public class LongEventFactory implements EventFactory<LongEvent>{
	@Override
	public LongEvent newInstance() {
		return new LongEvent();
	}
}

EventHandler类:数据处理类实现EventHandler<>接口

/**
 * 消费者,事件监听
 * @author Administrator
 *
 */
public class LongEventHandler implements EventHandler<LongEvent>{

	@Override
	public void onEvent(LongEvent longEvent, long l, boolean b) throws Exception {
		//消费,数据处理
		System.out.println(longEvent.getValue());
	}

}

数据生产类:

public class LongEventProducer {

	private final RingBuffer<LongEvent> ringBuffer;
	public LongEventProducer(RingBuffer<LongEvent> ringBuffer) {
		this.ringBuffer=ringBuffer;
	}
	
	public void onData(ByteBuffer bb) {
		//可以把ringBuffer看做一个事件队列,那么next就是得到下面一个事件槽
		long sequence=ringBuffer.next();
		try {			
			 //用上面的索引取出一个空的事件用于填充 
			LongEvent l=ringBuffer.get(sequence);
			l.setValue(bb.getLong(0));
		}catch (Exception e) {
			
		}finally {
			ringBuffer.publish(sequence);
		}
	}
}

测试类:

public class LongEventTest {

	public static void main(String[] args) {
		ExecutorService executor=Executors.newCachedThreadPool();
		LongEventFactory eventFactory=new LongEventFactory();
		//必须2的N次方
		int ringBufferSize = 1024*1024;
		/**
		//BlockingWaitStrategy 是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现
		WaitStrategy BLOCKING_WAIT = new BlockingWaitStrategy();
		//SleepingWaitStrategy 的性能表现跟BlockingWaitStrategy差不多,对CPU的消耗也类似,但其对生产者线程的影响最小,适合用于异步日志类似的场景
		WaitStrategy SLEEPING_WAIT = new SleepingWaitStrategy();
		//YieldingWaitStrategy 的性能是最好的,适合用于低延迟的系统。在要求极高性能且事件处理线数小于CPU逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性
		WaitStrategy YIELDING_WAIT = new YieldingWaitStrategy();
		*/
		Disruptor<LongEvent> dis=new Disruptor<>(eventFactory, ringBufferSize, executor, ProducerType.SINGLE, new YieldingWaitStrategy());
		dis.handleEventsWith(new LongEventHandler());
		
		dis.start();
		RingBuffer<LongEvent> ringBuffer=dis.getRingBuffer();
		LongEventProducer producer=new LongEventProducer(ringBuffer);
		//LongEventProducerWithTranslator producer = new LongEventProducerWithTranslator(ringBuffer);
		ByteBuffer bb=ByteBuffer.allocate(8);
		for (int i = 0; i < 100; i++) {
			bb.putLong(0,i);
			producer.onData(bb);
		}
		dis.shutdown();
		executor.shutdown();		
	}	
}

EventProducerWithTranslator实现方式:

public class LongEventProducerWithTranslator {

	//一个translator可以看做一个事件初始化器,publicEvent方法会调用它
	//填充Event
	private static final EventTranslatorOneArg<LongEvent, ByteBuffer> TRANSLATOR=
			new EventTranslatorOneArg<LongEvent, ByteBuffer>() {
		
		@Override
		public void translateTo(LongEvent event, long sequence, ByteBuffer buffer) {
			event.setValue(buffer.getLong(0));
		}
	};
	
	private final RingBuffer<LongEvent> ringBuffer;
	public LongEventProducerWithTranslator(RingBuffer<LongEvent> ringBuffer) {
		this.ringBuffer=ringBuffer;
	}
	public void onData(ByteBuffer buffer) {
		ringBuffer.publishEvent(TRANSLATOR,buffer);
	}
}

Disruptor术语说明

RingBuffer: 被看作Disruptor最主要的组件,然而从3.0开始RingBuffer仅仅负责存储和更新在Disruptor中流通的数据。对一些特殊的使用场景能够被用户(使用其他数据结构)完全替代。
Sequence: Disruptor使用Sequence来表示一个特殊组件处理的序号。和Disruptor一样,每个消费者(EventProcessor)都维持着一个Sequence。大部分的并发代码依赖这些Sequence值的运转,因此Sequence支持多种当前为AtomicLong类的特性。
Sequencer: 这是Disruptor真正的核心。实现了这个接口的两种生产者(单生产者和多生产者)均实现了所有的并发算法,为了在生产者和消费者之间进行准确快速的数据传递。
SequenceBarrier: 由Sequencer生成,并且包含了已经发布的Sequence的引用,这些的Sequence源于Sequencer和一些独立的消费者的Sequence。它包含了决定是否有供消费者来消费的Event的逻辑。
WaitStrategy:决定一个消费者将如何等待生产者将Event置入Disruptor。
Event:从生产者到消费者过程中所处理的数据单元。Disruptor中没有代码表示Event,因为它完全是由用户定义的。
EventProcessor:主要事件循环,处理Disruptor中的Event,并且拥有消费者的Sequence。它有一个实现类是BatchEventProcessor,包含了event loop有效的实现,并且将回调到一个EventHandler接口的实现对象。
EventHandler:由用户实现并且代表了Disruptor中的一个消费者的接口。
Producer:由用户实现,它调用RingBuffer来插入事件(Event),在Disruptor中没有相应的实现代码,由用户实现。
WorkProcessor:确保每个sequence只被一个processor消费,在同一个WorkPool中的处理多个WorkProcessor不会消费同样的sequence。
WorkerPool:一个WorkProcessor池,其中WorkProcessor将消费Sequence,所以任务可以在实现WorkHandler接口的worker吃间移交
LifecycleAware:当BatchEventProcessor启动和停止时,于实现这个接口用于接收通知。

EventProcessor使用:

handler消费类:

public class TradeHandler implements EventHandler<Trade>,WorkHandler<Trade>{

	@Override
	public void onEvent(Trade event) throws Exception {
		//生成订单id
		event.setId(UUID.randomUUID().toString());
		System.out.println(event);
	}
	@Override
	public void onEvent(Trade event, long sequence, boolean endOfBatch) throws Exception {
		this.onEvent(event);
	}
}

Trade数据封装类:

public class Trade {
	private String id;//id
	private String name;//名称
	private double price;//金额
	private AtomicInteger count=new AtomicInteger(0);
	public String getId() {
		return id;
	}
	public void setId(String id) {
		this.id = id;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public double getPrice() {
		return price;
	}
	public void setPrice(double price) {
		this.price = price;
	}
	public AtomicInteger getCount() {
		return count;
	}
	public void setCount(AtomicInteger count) {
		this.count = count;
	}
	
}

EventProcessorMain测试类:

public static void main(String[] args) throws InterruptedException, ExecutionException {
		int BUFFER_SIZE=1024;
		int THREAD_NUMBERS=4;
		/*
		 * createSingleProducer创建一个单生产者的RingBuffer,
		 * 第一个参数叫EventFactory,从名字上理解就是"事件工厂",其实它的职责就是产生数据填充RingBuffer的区块。
		 * 第二个参数是RingBuffer的大小,它必须是2的指数倍 目的是为了将求模运算转为&运算提高效率
		 * 第三个参数是RingBuffer的生产都在没有可用区块的时候(可能是消费者(或者说是事件处理器) 太慢了)的等待策略
		 */  
		final RingBuffer<Trade> ringBuffer=RingBuffer.createSingleProducer(new EventFactory<Trade>() {
			@Override
			public Trade newInstance() {
				return new Trade();
			}
		}, BUFFER_SIZE,new YieldingWaitStrategy());
		//创建一个线程池
		ExecutorService executors=Executors.newFixedThreadPool(THREAD_NUMBERS);
		//创建SequenceBarrier
		SequenceBarrier sequenceBarrier=ringBuffer.newBarrier();
		//创建消息处理器
		BatchEventProcessor<Trade> transProcessor=new BatchEventProcessor<Trade>(ringBuffer, sequenceBarrier, new TradeHandler());
		//这一步的目的是把消费者的位置信息引用注入到生产者 如果只有一个消费者的情况可以省略
		ringBuffer.addGatingSequences(transProcessor.getSequence());
		//把消息处理器提交到线程池
		executors.submit(transProcessor);
		//如果存在多个消费者,那么重复执行上面三行代码,把TradeHandler换成其他消费者类
		Future<?> future=executors.submit(new Callable<Trade>() {
			@Override
			public Trade call() throws Exception {
				long seq;
				for(int i=0;i<10;i++) {
					seq=ringBuffer.next();//占一个坑-----ringBuffer一个可用区块
					ringBuffer.get(seq).setPrice(Math.random()*9999);//给这个区块放入数据
					ringBuffer.publish(seq);//发布这个区块的数据使handler(consumer)可见
				}
				return null;
			}
		});
		
		future.get();//等待生成者结束
		Thread.sleep(1000);//等待一秒,等消费者处理完成
		transProcessor.halt();//通知事件(或者说消息)处理器,可以结束了(并不是马上结束)
		executors.shutdown();//终止线程
	}

WorkProcessor使用:

WorkProcessorMain测试类:

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import com.lmax.disruptor.EventFactory;
import com.lmax.disruptor.IgnoreExceptionHandler;
import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.SequenceBarrier;
import com.lmax.disruptor.WorkHandler;
import com.lmax.disruptor.WorkerPool;

public class WorkProcessorMain {

	public static void main(String[] args) throws InterruptedException, ExecutionException {
		int BUFFER_SIZE = 1024;
		int THREAD_NUMBERS = 4;
		EventFactory<Trade> eventFactory = new EventFactory<Trade>() {

			@Override
			public Trade newInstance() {
				return new Trade();
			}
		};
		final RingBuffer<Trade> ringBuffer = RingBuffer.createSingleProducer(eventFactory, BUFFER_SIZE);
		SequenceBarrier sequenceBarrier = ringBuffer.newBarrier();
		ExecutorService executors = Executors.newFixedThreadPool(THREAD_NUMBERS);
		WorkHandler<Trade> handler = new TradeHandler();
		WorkerPool<Trade> workerPool = new WorkerPool<>(ringBuffer, sequenceBarrier, new IgnoreExceptionHandler(),
				handler);
		workerPool.start(executors);
		// 如果存在多个消费者,那么重复执行上面三行代码,把TradeHandler换成其他消费者类
		Future<?> future = executors.submit(new Callable<Trade>() {
			@Override
			public Trade call() throws Exception {
				long seq;
				for (int i = 0; i < 10; i++) {
					seq = ringBuffer.next();// 占一个坑-----ringBuffer一个可用区块
					ringBuffer.get(seq).setPrice(Math.random() * 9999);// 给这个区块放入数据
					ringBuffer.publish(seq);// 发布这个区块的数据使handler(consumer)可见
				}
				return null;
			}
		});
		future.get();// 等待生成者结束
		Thread.sleep(1000);// 等待一秒,等消费者处理完成
		workerPool.halt();// 通知事件(或者说消息)处理器,可以结束了(并不是马上结束)
		executors.shutdown();// 终止线程
	}
}

菱形操作

在复杂场景下使用RingBuffer(希望P1生产的数据给C1、C2并行执行,最后C1、C2执行结束后C3执行)

Disruptor 学习_第1张图片C1和C2并行执行。

六边形操作

Disruptor 学习_第2张图片C1h和C2并行执行,C4和C5并行执行,并行执行完后执行C3

示例:

C1:

import com.lmax.disruptor.EventHandler;
import com.lmax.disruptor.WorkHandler;
import com.moudle.disruptorDemo.generate1.Trade;

public class Handler1 implements EventHandler<Trade>,WorkHandler<Trade>{

	@Override
	public void onEvent(Trade trade) throws Exception {
		System.out.println("handler1 set name:");
		trade.setName("h1");
		Thread.sleep(1000);
	}

	@Override
	public void onEvent(Trade arg0, long arg1, boolean arg2) throws Exception {
		this.onEvent(arg0);
	}
}

C2


import com.lmax.disruptor.EventHandler;
import com.lmax.disruptor.WorkHandler;
import com.moudle.disruptorDemo.generate1.Trade;

public class Handler2 implements EventHandler<Trade>,WorkHandler<Trade>{

	@Override
	public void onEvent(Trade trade) throws Exception {
		System.out.println("handler2 set price:");
		trade.setPrice(17);
		Thread.sleep(1000);
	}

	@Override
	public void onEvent(Trade arg0, long arg1, boolean arg2) throws Exception {
		this.onEvent(arg0);
	}
}

C3


import com.lmax.disruptor.EventHandler;
import com.lmax.disruptor.WorkHandler;
import com.moudle.disruptorDemo.generate1.Trade;

public class Handler3 implements EventHandler<Trade>,WorkHandler<Trade>{

	@Override
	public void onEvent(Trade event) throws Exception {
		System.out.println("handler3: name: " + event.getName() + " , price: " + event.getPrice() + ";  instance: " + event.toString());
	}

	@Override
	public void onEvent(Trade arg0, long arg1, boolean arg2) throws Exception {
		this.onEvent(arg0);
	}

}

C4


import com.lmax.disruptor.EventHandler;
import com.lmax.disruptor.WorkHandler;
import com.moudle.disruptorDemo.generate1.Trade;

public class Handler4 implements EventHandler<Trade>,WorkHandler<Trade>{

	@Override
	public void onEvent(Trade trade) throws Exception {
		System.out.println("handler4 set addName:");
		trade.setName(trade.getName()+"h4");
	}

	@Override
	public void onEvent(Trade arg0, long arg1, boolean arg2) throws Exception {
		this.onEvent(arg0);
	}

}

C5


import com.lmax.disruptor.EventHandler;
import com.lmax.disruptor.WorkHandler;
import com.moudle.disruptorDemo.generate1.Trade;

public class Handler5 implements EventHandler<Trade>,WorkHandler<Trade>{

	@Override
	public void onEvent(Trade trade) throws Exception {
		System.out.println("handler5 set add price:");
		trade.setPrice(trade.getPrice()+3);
	}

	@Override
	public void onEvent(Trade arg0, long arg1, boolean arg2) throws Exception {
		this.onEvent(arg0);
	}

}

P1(生产者)


import java.util.Random;
import java.util.concurrent.CountDownLatch;

import com.lmax.disruptor.EventTranslator;
import com.lmax.disruptor.dsl.Disruptor;
import com.moudle.disruptorDemo.generate1.Trade;

public class TradePublisher implements Runnable{
	Disruptor<Trade> disruptor;
	private CountDownLatch latch;
	private static int count =1;//模拟百万次交易的发生
	
	public TradePublisher(Disruptor<Trade> disruptor,CountDownLatch latch){
		this.disruptor=disruptor;
		this.latch=latch;
	}

	@Override
	public void run() {
		TradeEventTranslator translator=new TradeEventTranslator();
		for(int i=0;i<count;i++){
			disruptor.publishEvent(translator);
		}
		latch.countDown();
	}

}
class TradeEventTranslator implements EventTranslator<Trade>{

	private Random random=new Random();
	
	@Override
	public void translateTo(Trade trade, long arg1) {
		this.generateTrade(trade);
	}
	private Trade generateTrade(Trade trade){
		trade.setPrice(random.nextDouble()*9999);
		return trade;
	}
}

Main:

package com.moudle.disruptorDemo.generate2;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import com.lmax.disruptor.BusySpinWaitStrategy;
import com.lmax.disruptor.EventFactory;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.dsl.EventHandlerGroup;
import com.lmax.disruptor.dsl.ProducerType;
import com.moudle.disruptorDemo.generate1.Trade;

public class Main {
	
	public static void main(String[] args) throws InterruptedException {
		long beginTime=System.currentTimeMillis();
		int bufferSize=1024;
		
		ExecutorService executor=Executors.newFixedThreadPool(8);
		
		Disruptor<Trade> disruptor=new Disruptor<>(new EventFactory<Trade>() {
			@Override
			public Trade newInstance() {
				return new Trade();
			}
		}, bufferSize, executor, ProducerType.SINGLE, new BusySpinWaitStrategy());
		
		//菱形操作
		//使用disruptor创建消费者组C1,C2  
		EventHandlerGroup<Trade> handlerGroup=disruptor.handleEventsWith(new Handler1(),new Handler2());
		//声明在C1,C2完事之后执行JMS消息发送操作 也就是流程走到C3 
		handlerGroup.then(new Handler3());
		//輸出結果:
//		handler1 set name:
//		handler2 set price:
//		handler3: name: h1 , price: 17.0;  instance: com.moudle.disruptorDemo.generate1.Trade@220a5c4d
		
		/*//六边形操作
		Handler1 h1 = new Handler1();
        Handler2 h2 = new Handler2();
        Handler3 h3 = new Handler3();
        Handler4 h4 = new Handler4();
        Handler5 h5 = new Handler5();
        disruptor.handleEventsWith(h1,h2);
        disruptor.after(h1).handleEventsWith(h4);
        disruptor.after(h2).handleEventsWith(h5);
        disruptor.after(h4,h5).handleEventsWith(h3);
        //输出结果:
//        handler1 set name:
//        handler2 set price:
//        handler4 set addName:
//        handler5 set add price:
//        handler3: name: h1h4 , price: 20.0;  instance: com.moudle.disruptorDemo.generate1.Trade@5e6d6957
        */
	/*	//顺序执行
		disruptor.handleEventsWith(new Handler1()).
    	handleEventsWith(new Handler2()).
    	handleEventsWith(new Handler3());
		//输出结果:
//			handler1 set name:
//			handler2 set price:
//			handler3: name: h1 , price: 17.0;  instance: com.moudle.disruptorDemo.generate1.Trade@331d6441
		*/
		disruptor.start();//启动
		CountDownLatch latch=new CountDownLatch(1);
		//生产者准备
		executor.submit(new TradePublisher(disruptor, latch));
		latch.await();//等待生产完成
		disruptor.shutdown();
		executor.shutdown();
		
	}

}

多生产者多消费者的使用:

Order订单类:

package com.moudle.disruptorDemo.multi;

public class Order {

	private String id;//id
	private String name;//
	private double price;//
	public String getId() {
		return id;
	}
	public void setId(String id) {
		this.id = id;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public double getPrice() {
		return price;
	}
	public void setPrice(double price) {
		this.price = price;
	}
	
}

Producer生产者:

package com.moudle.disruptorDemo.multi;

import com.lmax.disruptor.RingBuffer;

public class Producer {

	private final RingBuffer<Order> ringBuffer;
	public Producer(RingBuffer<Order> ringBuffer){
		this.ringBuffer=ringBuffer;
	}
	/**
	 * onData用来发布事件,每调用一次就发布一次事件
	 * 它的参数会用过事件传递给消费者
	 */
	public void onData(String data){
		//可以把ringBuffer看做一个事件队列,那么next就是得到下面一个事件槽
		long sequence=ringBuffer.next();
		try {
			//用上面的索引取出一个空的事件用于填充(获取该序号对应的事件对象)
			Order order=ringBuffer.get(sequence);
			//获取要通过事件传递的业务数据
			order.setId(data);
		} catch (Exception e) {
			
		}finally{
			//发布事件
			//注意,最后的 ringBuffer.publish 方法必须包含在 finally 中以确保必须得到调用;如果某个请求的 sequence 未被提交,将会堵塞后续的发布操作或者其它的 producer。
			ringBuffer.publish(sequence);
		}
	}
	
}

Consumer消费者:

package com.moudle.disruptorDemo.multi;

import java.util.concurrent.atomic.AtomicInteger;

import com.lmax.disruptor.WorkHandler;

public class Consumer implements WorkHandler<Order>{
	private String consumerId;
	private static AtomicInteger count=new AtomicInteger(0);
	public Consumer(String consumerId){
		this.consumerId=consumerId;
	}

	@Override
	public void onEvent(Order order) throws Exception {
		System.out.println("当前消费者:"+this.consumerId+",消费消息:"+order);
		count.incrementAndGet();
	}

	public int getCount(){
		return count.get();
	}	
}

Main测试类:

package com.moudle.disruptorDemo.multi;

import java.util.UUID;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.Executor;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import com.lmax.disruptor.EventFactory;
import com.lmax.disruptor.ExceptionHandler;
import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.SequenceBarrier;
import com.lmax.disruptor.WorkerPool;
import com.lmax.disruptor.YieldingWaitStrategy;
import com.lmax.disruptor.dsl.ExceptionHandlerWrapper;
import com.lmax.disruptor.dsl.ProducerType;

public class Main {
	public static void main(String[] args) throws Exception{
//		RingBuffer ringBuffer=RingBuffer.create(
//				ProducerType.MULTI, new EventFactory() {
//					@Override
//					public Order newInstance() {
//						return new Order();
//					}
//				}, 1024*1024, new YieldingWaitStrategy());
		//创建ringBuffer
		RingBuffer<Order> ringBuffer=RingBuffer.createMultiProducer(new EventFactory<Order>() {

			@Override
			public Order newInstance() {
				return new Order();
			}
		}, 1024*1024, new YieldingWaitStrategy());
		//创建SequenceBarrier
		SequenceBarrier barriers=ringBuffer.newBarrier();
		//创建3个消费者实例
		Consumer[] consumers=new Consumer[3];
		for (int i = 0; i < consumers.length; i++) {
			consumers[i]=new Consumer("c"+i);			
		}
		WorkerPool<Order> workerPool=new WorkerPool<>(
				ringBuffer, barriers, new IntEventExceptionHandler(), consumers);
		//这一步的目的是把消费者的位置信息引用注入到生产者 如果只有一个消费者的情况可以省略。
		//workerPool.getWorkerSequences()获取Sequence集合
		ringBuffer.addGatingSequences(workerPool.getWorkerSequences());
		//创建线程池
		ExecutorService executorService=Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors());
		workerPool.start(executorService);		
		final CountDownLatch latch=new CountDownLatch(1);
		for (int i = 0; i < 100; i++) {
			final Producer producer=new Producer(ringBuffer);
			new Thread(new Runnable() {
				
				@Override
				public void run() {
					try {
						//等待生产者100个线程启动
						latch.await();
						for (int j = 0; j < 100; j++) {
							//生产数据 
							producer.onData(UUID.randomUUID().toString());
						}
					} catch (InterruptedException e) {
						e.printStackTrace();
					}
				}
			}).start();
		}
		//等待两秒,等生产者的100个线程启动
		Thread.sleep(2000);
		System.out.println("---------------开始生产-----------------");
		latch.countDown();
		Thread.sleep(5000);
		System.out.println("总数:"+consumers[0].getCount());
		executorService.shutdown();
	}
	static class IntEventExceptionHandler implements ExceptionHandler<Order>{

		@Override
		public void handleEventException(Throwable arg0, long arg1, Order arg2) {			
		}

		@Override
		public void handleOnShutdownException(Throwable arg0) {	
		}

		@Override
		public void handleOnStartException(Throwable arg0) {
		}
		
	}
}

你可能感兴趣的:(并发编程)