PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序。它主要由Facebook的人工智能研究小组开发。Uber的“ Pyro”也是使用的这个库。基于Python的科学计算包,服务于以下两种场景:
作为NumPy的替代品,可以使用GPU的强大计算能力
提供最大的灵活性和高速的深度学习研究平台
PyTorch是一个Python包,提供两个高级功能:
具有强大的GPU加速的张量计算(如NumPy)
包含自动求导系统的的深度神经网络
pip install torch===1.4.0 torchvision===0.5.0 -f https://download.pytorch.org/whl/torch_stable.html
Tensors(张量)
Tensors与Numpy中的 ndarrays类似,但是在PyTorch中 Tensors 可以使用GPU进行计算.。
创建一个tensor:
from __future__ import print_function
import torch
x = torch.tensor([5.5, 3])
print(x)
x = torch.rand(5, 3)#随机生成5*3的矩阵
print(x)
result = torch.empty(5, 3)
x = torch.rand(5, 3)
y = torch.rand(5, 3)
torch.add(x, y, out=result)
print(result)
NumPy Array 转化成 Torch Tensor
使用from_numpy自动转化
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
Torch Tensor转numpy:
a = torch.ones(5)
print(a)
b = a.numpy()
print(b)
CUDA张量将张量放入指定的设备中去:
# is_available 函数判断是否有cuda可以使用
# ``torch.device``将张量移动到指定的设备中
if torch.cuda.is_available():
device = torch.device("cuda") # a CUDA 设备对象
y = torch.ones_like(x, device=device) # 直接从GPU创建张量
x = x.to(device) # 或者直接使用``.to("cuda")``将张量移动到cuda中
z = x + y
print(z)
print(z.to("cpu", torch.double)) # ``.to`` 也会对变量的类型做更改
PyTorch 中所有神经网络的核心是 autograd
包。
我们先简单介绍一下这个包,然后训练第一个简单的神经网络。
autograd
包为张量上的所有操作提供了自动求导。
它是一个在运行时定义的框架,这意味着反向传播是根据你的代码来确定如何运行,并且每次迭代可以是不同的。
torch.Tensor
是这个包的核心类。如果设置
.requires_grad
为 True
,那么将会追踪所有对于该张量的操作。
当完成计算后通过调用 .backward()
,自动计算所有的梯度,
这个张量的所有梯度将会自动积累到 .grad
属性。
要阻止张量跟踪历史记录,可以调用.detach()
方法将其与计算历史记录分离,并禁止跟踪它将来的计算记录。
为了防止跟踪历史记录(和使用内存),可以将代码块包装在with torch.no_grad():
中。
在评估模型时特别有用,因为模型可能具有requires_grad = True
的可训练参数,但是我们不需要梯度计算。
在自动梯度计算中还有另外一个重要的类Function
.
Tensor
和 Function
互相连接并生成一个非循环图,它表示和存储了完整的计算历史。
每个张量都有一个.grad_fn
属性,这个属性引用了一个创建了Tensor
的Function
(除非这个张量是用户手动创建的,即,这个张量的
grad_fn
是 None
)。
如果需要计算导数,你可以在Tensor
上调用.backward()
。
如果Tensor
是一个标量(即它包含一个元素数据)则不需要为backward()
指定任何参数,
但是如果它有更多的元素,你需要指定一个gradient
参数来匹配张量的形状。
例子:
x = torch.ones(2, 2, requires_grad=True) #创建一个张量并设置 requires_grad=True 用来追踪他的计算历史
print(x)
y = x + 2 #对张量进行操作
print(y)
print(y.grad_fn)#结果y已经被计算出来了,所以,grad_fn已经被自动生成了。
z = y * y * 3
out = z.mean()
print(z, out)
out.backward() #反向传播 因为 out是一个纯量(scalar),out.backward() 等于out.backward(torch.tensor(1))。
print(x.grad)# 显示out对x的反向传播梯度
原理:
得到矩阵 4.5
.调用 out
Tensor “ o o o”.
得到 o = 1 4 ∑ i z i o = \frac{1}{4}\sum_i z_i o=41∑izi,
z i = 3 ( x i + 2 ) 2 z_i = 3(x_i+2)^2 zi=3(xi+2)2 and z i ∣ x i = 1 = 27 z_i\bigr\rvert_{x_i=1} = 27 zi∣∣xi=1=27.
因此,
∂ o ∂ x i = 3 2 ( x i + 2 ) \frac{\partial o}{\partial x_i} = \frac{3}{2}(x_i+2) ∂xi∂o=23(xi+2), hence
∂ o ∂ x i ∣ x i = 1 = 9 2 = 4.5 \frac{\partial o}{\partial x_i}\bigr\rvert_{x_i=1} = \frac{9}{2} = 4.5 ∂xi∂o∣∣xi=1=29=4.5.
第二个例子:
x = torch.randn(3, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:
y = y * 2
print(y)
gradients = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)#输入x的值求梯度
y.backward(gradients)
print(x.grad)
使用torch.nn包来构建神经网络。nn包依赖autograd包来定义模型并求导。 一个nn.Module包含各个层和一个forward(input)方法,该方法返回output。
神经网络的典型训练过程如下:
weight = weight - learning_rate * gradient
# 首先要引入相关的包
import torch
# 引入torch.nn并指定别名
import torch.nn as nn
#打印一下版本
torch.__version__
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
# nn.Module子类的函数必须在构造函数中执行父类的构造函数
super(Net, self).__init__()
# 卷积层 '1'表示输入图片为单通道, '6'表示输出通道数,'3'表示卷积核为3*3
self.conv1 = nn.Conv2d(1, 6, 3)
#线性层,输入1350个特征,输出10个特征
self.fc1 = nn.Linear(1350, 10) #这里的1350是如何计算的呢?这就要看后面的forward函数
#正向传播
def forward(self, x):
print(x.size()) # 结果:[1, 1, 32, 32]
# 卷积 -> 激活 -> 池化
x = self.conv1(x) #根据卷积的尺寸计算公式,计算结果是30,具体计算公式后面第二章第四节 卷积神经网络 有详细介绍。
x = F.relu(x)
print(x.size()) # 结果:[1, 6, 30, 30]
x = F.max_pool2d(x, (2, 2)) #我们使用池化层,计算结果是15
x = F.relu(x)
print(x.size()) # 结果:[1, 6, 15, 15]
# reshape,‘-1’表示自适应
#这里做的就是压扁的操作 就是把后面的[1, 6, 15, 15]压扁,变为 [1, 1350]
x = x.view(x.size()[0], -1)
print(x.size()) # 这里就是fc1层的的输入1350
x = self.fc1(x)
return x
net = Net()
print(net)
输出:
网络的可学习参数通过net.parameters()返回
for parameters in net.parameters():
print(parameters)
forward函数的输入和输出都是Tensor,执行下面代码打印每个层的输出格式:
input = torch.randn(1, 1, 32, 32) # 这里的对应前面fforward的输入是32
out = net(input)
out.size()
在反向传播前,先要将所有参数的梯度清零:
net.zero_grad()
out.backward(torch.ones(1,10)) # 反向传播的实现是PyTorch自动实现的,我们只要调用这个函数即可
损失函数:
在nn中PyTorch还预制了常用的损失函数,下面我们用MSELoss用来计算均方误差
y = torch.arange(0,10).view(1,10).float()
criterion = nn.MSELoss()
loss = criterion(out, y)
#loss是个scalar,我们可以直接用item获取到他的python类型的数值
print(loss.item())
优化器:
在反向传播计算完所有参数的梯度后,还需要使用优化方法来更新网络的权重和参数,例如随机梯度下降法(SGD)的更新策略如下:
weight = weight - learning_rate * gradient
在torch.optim中实现大多数的优化方法,例如RMSProp、Adam、SGD等,下面我们使用SGD做个简单的样例
out = net(input) # 这里调用的时候会打印出我们在forword函数中打印的x的大小
criterion = nn.MSELoss()
loss = criterion(out, y)
#新建一个优化器,SGD只需要要调整的参数和学习率
optimizer = torch.optim.SGD(net.parameters(), lr = 0.01)
# 先梯度清零(与net.zero_grad()效果一样)
optimizer.zero_grad()
loss.backward()
#更新参数
optimizer.step()
以上步骤我们实现了盛景网络的数据完整传播步骤。
PyTorch通过torch.utils.data对一般常用的数据加载进行了封装,可以很容易地实现多线程数据预读和批量加载。 并且torchvision已经预先实现了常用图像数据集,包括前面使用过的CIFAR-10,ImageNet、COCO、MNIST、LSUN等数据集,可通过torchvision.datasets方便的调用
Dataset
Dataset是一个抽象类,为了能够方便的读取,需要将要使用的数据包装为Dataset类。
自定义的Dataset需要继承它并且实现两个成员方法:
__getitem__()
该方法定义用索引(0
到 len(self)
)获取一条数据或一个样本__len__()
该方法返回数据集的总长度自定义数据类方法:
# 首先要引入相关的包
import torch
#打印一下版本
torch.__version__
#引用
from torch.utils.data import Dataset
import pandas as pd
#定义一个数据集
class BulldozerDataset(Dataset):
""" 数据集演示 """
def __init__(self, csv_file):
"""实现初始化方法,在初始化的时候将数据读载入"""
self.df=pd.read_csv(csv_file)
def __len__(self):
'''
返回df的长度
'''
return len(self.df)
def __getitem__(self, idx):
'''
根据 idx 返回一行数据
'''
return self.df.iloc[idx].SalePrice
ds_demo= BulldozerDataset('median_benchmark.csv')# 从https://www.kaggle.com/c/bluebook-for-bulldozers/data下载median_benchmark.csv数据集放入当前目录
#实现了 __len__ 方法所以可以直接使用len获取数据总数
len(ds_demo)
#用索引可以直接访问对应的数据,对应 __getitem__ 方法
ds_demo[0]
定义好数据集类之后使用dataloader加载数据:
dl = torch.utils.data.DataLoader(ds_demo, batch_size=10, shuffle=True, num_workers=0)
# DataLoader为我们提供了对Dataset的读取操作,常用参数有:batch_size(每个batch的大小)、 shuffle(是否进行shuffle操作)、
# num_workers(加载数据的时候使用几个子进程)。下面做一个简单的操作
idata=iter(dl)#DataLoader返回的是一个可迭代对象,我们可以使用迭代器分次获取数据
print(next(idata))
我们已经可以通过dataset定义数据集,并使用Datalorder载入和遍历数据集,除了这些以外,PyTorch还提供能torcvision的计算机视觉扩展包,里面封装了
torchvision 包
torchvision 是PyTorch中专门用来处理图像的库,PyTorch官网的安装教程中最后的pip install torchvision 就是安装这个包。
torchvision.datasets
torchvision.datasets 可以理解为PyTorch团队自定义的dataset,这些dataset帮我们提前处理好了很多的图片数据集,我们拿来就可以直接使用:
import torchvision.datasets as datasets
trainset = datasets.MNIST(root='./data', # 表示 MNIST 数据的加载的目录
train=True, # 表示是否加载数据库的训练集,false的时候加载测试集
download=True, # 表示是否自动下载 MNIST 数据集
transform=None) # 表示是否需要对数据进行预处理,none为不进行预处理
torchvision.models
torchvision不仅提供了常用图片数据集,还提供了训练好的模型,可以加载之后,直接使用,或者在进行迁移学习
torchvision.models模块的 子模块中包含以下模型结构。