scrapy爬虫爬取动态网站

爬取360图片上的美女图片

360图片网站上的图片是动态加载的,动态加载 就是通过ajax请求接口拿到数据喧染在网页上。我们就可以通过游览器的开发者工具分析,在我们向下拉动窗口时就会出现这么个请求,如图所示:
scrapy爬虫爬取动态网站_第1张图片

所以就判定这个url就是ajax请求的接口:,http://image.so.com/zj?ch=beauty&sn=30&listtype=new&temp=1,通过分析,sn=30 表示取的是前面30条数据,sn=60取的是30到60条的数据,我们就可以通过改变sn的数来拿到不同的数据,下面就开始我们的scrap项目:

# 在虚拟环境里创建项目
scrapy startproject  image360
# 创建蜘蛛
scrapy  genspider image  image.so.com

项目目录结构如下:
scrapy爬虫爬取动态网站_第2张图片

首先建立保存数据的模型:在items.py文件中

import scrapy


class ImageItem(scrapy.Item):
    # define the fields for your item here like:
    title = scrapy.Field() # 图片的标题
    tag = scrapy.Field() # 图片的标签
    width = scrapy.Field() # 图片的宽度
    height = scrapy.Field() # 图片的高度
    url = scrapy.Field() # 图片的url

开始写蜘蛛:在iamge.py文件中

import scrapy
from urllib.parse import urlencode
from json import loads

class ImageSpider(scrapy.Spider):
    name = 'image' # 蜘蛛的名字
    allowed_domains = ['image.so.com'] # 允许访问的域名

    # 因为不和以前一样给一个初始url,所以需要重写父类的start_requests方法
    def strat_requests(self):
        # 定义一个基础的url
        base_url = 'http://image.so.com/zj?'
        # 把固定的参数保存在一个字典里
        param = {'ch': 'beauty', 'listtype': 'new', 'temp': 1}
        # 我们拿数据只需要改变sn的值,所以我们来个循环,我们拿300条数据
        for page in range(10):
            # 把sn和对应的数添加到字典里
            param['sn'] = page * 30
            # 一个完整的url   
            full_url = base_url + urlencode(param)
            # 返回一个生成器,
             yield scrapy.Request(url=full_url, callback=self.parse)

    def     def parse(self, response):
        # 把从接口里拿到的数据转成字典
        model_dict = loads(response.text)
        # 找到对应的数据放在item里
        for elem in model_dict['list']:
            item = ImageItem()
            item['title'] = elem['group_title']
            item['tag'] = elem['tag']
            item['width'] = elem['cover_width']
            item['height'] = elem['cover_height']
            item['url'] = elem['qhimg_url']
            yield item

数据的持久化:在pipelines.py文件中

from scrapy import Request
from scrapy.exceptions import DropItem
from scrapy.pipelines.images import ImagesPipeline
from pymongo import MongoClient


# 下载图片的类,继承了scrap的ImagesPipeline类,并且重写了里面3个方法
class SaveImagePipeline(ImagesPipeline):

    def get_media_requests(self, item, info):
        yield Request(url=item['url'])

    def item_completed(self, results, item, info):
        if not results[0][0]:
            raise DropItem('下载失败')
        return item

    # 获取文件的文件名的方法
    def file_path(self, request, response=None, info=None):
        return request.url.split('/')[-1]


# 保存到数据库的类
class SaveToMongoPipeline(object):

    def __init__(self, mongo_url, db_name):
        self.mongo_url = mongo_url
        self.db_name = db_name
        self.client = None
        self.db = None
        self.collect = None

    # 把item数据存入mongo数据库里
    def process_item(self, item, spider):
        # item['image_name'] = item['url'].split('/')[-1]
        # self.db.image.insert(dict(item))

        self.collect.insert_one(dict(item))
        return item

    # 创建连接mongo数据库的方法,在开始爬虫程序时自动调用
    def open_spider(self, spider):
        self.client = MongoClient(self.mongo_url)
        self.db = self.client[self.db_name]
        self.collect = self.db.image

    # 关闭连接的方法,在爬虫程序结束时自动调用
    def close_spider(self, spider):
        self.client.close()

    # 这是个类方法
    @classmethod
    def from_crawler(cls, crawler):
        # 当return cls时就会调用该类的初始方法__init__,就把连接mango数据库的参数和数据库名字传过去
        # crawler.setting.get('MONGO_URL')就是拿到settings.py文件里设置的 MONGO_URL
        return cls(crawler.settings.get('MONGO_URL'),
                   crawler.settings.get('MONGO_DB'))

在配置文件中开启pipelines

scrapy爬虫爬取动态网站_第3张图片

使用webdriver

from selenium import webdriver
from bs4 import BeautifulSoup
import requests

def main():
    driver = webdriver.Chrome()
    driver.get('https://v.taobao.com/v/content/live?catetype=704&from=taonvlang')
    soup = BeautifulSoup(driver.page_source, 'lxml')
    for img_tag in soup.body.select('img[src]'):
        url = img_tag.attrs['src']
        try:
            if not str(url).startswith('http'):
                url = 'http:' + url
                filename = url[url.rfind('/') + 1:]
                resp = requests.get(url)
                with open('../images/' + filename,'wb') as f:
                    f.write(resp.content)
        except OSError:
            print(filename + '下载失败')
    print('图片下载完成')


if __name__ == '__main__':
    main()

你可能感兴趣的:(scrapy爬虫爬取动态网站)