最大流最小割定理 (定理,割集)

#1378 : 网络流二·最大流最小割定理

题目链接:http://hihocoder.com/problemset/problem/1378?sid=1393576

时间限制:10000ms

单点时限:1000ms

内存限制:256MB

描述

小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么?

小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t。每一条边e(u,v)具有容量c(u,v)。网络流的最大流问题求解的就是从s到t最多能有多少流量。

小Hi:那这个问题解决办法呢?

小Ho:解决网络流的基本思路就是寻找增广路,不断更新残留网络。直到找不到新的增广路,此时得到的流就是该网络的最大流。

小Hi:没错,看来你记得很牢嘛。

小Ho:哎嘿嘿,不过这里我有一个问题,为什么找不到增广路时就已经找到了最大流呢?

小Hi:这一次我就来解决你的疑惑,首先我们要从网络流的割开始讲起。

对于一个网络流图G=(V,E),其割的定义为一种点的划分方式:将所有的点划分为S和T=V-S两个部分,其中源点s∈S,汇点t∈T。

对于一个割(S,T),我们定义净流f(S,T)表示穿过割(S,T)的流量之和,即:

f(S,T) = Σf(u,v) | u∈S,v∈T

举个例子(该例子选自算法导论):

净流f = f(2,4)+f(3,4)+f(3,5) = 12+(-4)+11 = 19

同时我们定义割的容量C(S,T)为所有从S到T的边容量之和,即:

C(S,T) = Σc(u,v) | u∈S,v∈T

同样在上面的例子中,其割的容量为:

c(2,4)+c(3,5)=12+14=26

小Ho:也就是说在计算割(S,T)的净流f(S,T)时可能存在反向的流使得f(u,v)<0,而容量C(S,T)一定是非负数。

小Hi:你这么说也没错。实际上对于任意一个割的净流f(S,T)总是和网络流的流量f相等。比如上面例子中我们改变一下割的方式:

最大流最小割定理 (定理,割集)_第1张图片

可以计算出对于这两种情况净流f(S,T)仍然等于19。

一个直观的解释是:根据网络流的定义,只有源点s会产生流量,汇点t会接收流量。因此任意非s和t的点u,其净流量一定为0,也即是Σ(f(u,v))=0。而源点s的流量最终都会通过割(S,T)的边到达汇点t,所以网络流的流f等于割的静流f(S,T)。

严格的证明如下:

f(S,T) = f(S,V) - f(S,S)
从S到T的流等于从S到所有节点的流减去从S到S内部节点的流
f(S,T) = f(S,V)
由于S内部的节点之间存在的流一定有对应的反向流,因此f(S,S)=0
f(S,T) = f(s,V) + f(S-s,V)
再将S集合分成源点s和其他属于S的节点
f(S,T) = f(s,V)
由于除了源点s以外其他节点不会产生流,因此f(S-s,V)=0
f(S,T) = f(s,V) = f

所以f(S,T)等于从源点s出来的流,也就是网络的流f。

小Ho:简单理解的话,也就是说任意一个割的净流f(S,T)都等于当前网络的流量f

小Hi:是这样的。而对于任意一个割的净流f(S,T)一定是小于等于割的容量C(S,T)。那也即是,对于网络的任意一个流f一定是小于等于任意一个割的容量C(S,T)。

而在所有可能的割中,存在一个容量最小的割,我们称其为最小割

这个最小割限制了一个网络的流f上界,所以有:

对于任一个网络流图来说,其最大流一定是小于等于最小割的。

小Ho:但是这和增广路又有什么关系呢?

小Hi:接下来就是重点了。利用上面讲的知识,我们可以推出一个最大流最小割定理

对于一个网络流图G=(V,E),其中有源点s和汇点t,那么下面三个条件是等价的:
1. 流f是图G的最大流
2. 残留网络Gf不存在增广路
3. 对于G的某一个割(S,T),此时f = C(S,T)

首先证明1 => 2

我们利用反证法,假设流f是图G的最大流,但是残留网络中还存在有增广路p,其流量为fp。则我们有流f'=f+fp>f。这与f是最大流产生矛盾。

接着证明2 => 3

假设残留网络Gf不存在增广路,所以在残留网络Gf中不存在路径从s到达t。我们定义S集合为:当前残留网络中s能够到达的点。同时定义T=V-S。
此时(S,T)构成一个割(S,T)。且对于任意的u∈S,v∈T,有f(u,v)=c(u,v)。若f(u,v)0,s可以到达v,与v属于T矛盾。
因此有f(S,T)=Σf(u,v)=Σc(u,v)=C(S,T)。

最后证明3 => 1

由于f的上界为最小割,当f到达割的容量时,显然就已经到达最大值,因此f为最大流。

这样就说明了为什么找不到增广路时,所求得的一定是最大流。

小Ho:原来是这样,我明白了。

输入

第1行:2个正整数N,M。2≤N≤500,1≤M≤20,000。

第2..M+1行:每行3个整数u,v,c(u,v),表示一条边(u,v)及其容量c(u,v)。1≤u,v≤N,0≤c(u,v)≤100。

给定的图中默认源点为1,汇点为N。可能有重复的边。

输出

第1行:2个整数A B,A表示最小割的容量,B表示给定图G最小割S集合的点数。

第2行:B个空格隔开的整数,表示S集合的点编号。

若存在多个最小割可以输出任意一个的解。

样例输入

6 7
1 2 3
1 3 5
2 4 1
3 4 2
3 5 3
4 6 4
5 6 2

样例输出

5 4
1 2 3 5

解题思路:这个题主要是巩固一下网络流的一下定理概念以及如何求割集。

我们从源点出发,如过f(u,v)没有流满则说明s点能够到达v点,v属于s

找到所有的属于s的点剩下的就是属于t的点。

大概证明:就是属于最小割的边u都属于集合s,v都属于集合u,u->v之间的边都是流满的

所以这些流量被减去后就将一个图分成了两个集合,源点s能够到达的点就是属于s集合的点。

因为题目说明最多有20000条边,刚开始的时候边数开的太小了一直tle。。。

#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define sca(x) scanf("%d",&x)
#define per(i,j,k) for(int i=j;i>=k;i--)
#define inf 0x3f3f3f3f
#define LL long long
#define N 40005
#define inf 0x3f3f3f3f
const LL mod = 998244353;

struct edg
{
    int to,w,nt;
}g[N];

struct node
{
    int v,id;
}pre[505];


int tot;
int head[505],vis[505];
void addedg(int u,int v,int w)
{
    g[tot].to=v;
    g[tot].w=w;
    g[tot].nt=head[u];
    head[u]=tot++;
}

bool bfs(int s,int t)
{
    memset(vis,false,sizeof(vis));
    queueq;
    q.push(s);
    vis[s]=true;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u];i!=-1;i=g[i].nt)
        {
            int to=g[i].to;
            if(!vis[to]&&g[i].w>0)
            {
                //cout<<"u->to "<ss;
    memset(vis,false,sizeof(vis));
    queueq;
    q.push(s);
    vis[s]=true;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        ss.insert(u);
        for(int i=head[u];i!=-1;i=g[i].nt)
        {
            int to=g[i].to;
            if(!vis[to]&&g[i].w>0)
            {
                vis[to]=true;
                q.push(to);
            }
        }
    }
    printf("%d\n",ss.size());
    set::iterator it;
    for(it=ss.begin();it!=ss.end();it++)
    {
        printf("%d",*it);
        if(it!=ss.end())
        printf(" ");
    }
    printf("\n");
}
void EK(int s,int t)
{
    int ans=0;
    while(bfs(s,t))
    {
        int mini=inf;
        for(int i=t;i!=s;i=pre[i].v)
        {
            mini=min(mini,g[pre[i].id].w);
        }
        for(int i=t;i!=s;i=pre[i].v)
        {
            g[pre[i].id].w-=mini;
            g[pre[i].id^1].w+=mini;
        }
        ans+=mini;
    }
    //cout<<"ans="<

 

你可能感兴趣的:(网络流,图论)