- HDFS 伪分布模式搭建与使用全攻略(适合初学者 & 开发测试环境)
huihui450
hdfshadoop大数据
HDFS(HadoopDistributedFileSystem)作为Hadoop生态系统的核心组件,广泛应用于海量数据的分布式存储场景。对于开发者而言,伪分布模式提供了一种低成本、高还原度的学习与测试方式。本文将详细介绍如何在本地搭建并使用HDFS的伪分布模式,包括环境准备、配置过程、常用命令及常见问题排查,帮助你快速入门Hadoop分布式文件系统的实践操作。一、什么是伪分布模式?Hadoop有
- MapReduce学习笔记
1.MapReduce做什么Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”来处理。Reducer负责对map阶段的结果进行汇总。2.MapReduce工作机制实体一:客户端,用来提交MapReduce作业。实体二:JobTracker,用来协调作业的运行。实体三:TaskTracker,用来处理作业划分后的任务。实体四:HDFS,用来在其它实体间共享作业文件。3.编写MapRed
- Hadoop核心组件最全介绍
Cachel wood
大数据开发hadoop大数据分布式spark数据库计算机网络
文章目录一、Hadoop核心组件1.HDFS(HadoopDistributedFileSystem)2.YARN(YetAnotherResourceNegotiator)3.MapReduce二、数据存储与管理1.HBase2.Hive3.HCatalog4.Phoenix三、数据处理与计算1.Spark2.Flink3.Tez4.Storm5.Presto6.Impala四、资源调度与集群管
- 数据仓库技术及应用(Hive 产生背景与架构设计,存储模型与数据类型)
娟恋无暇
数据仓库笔记hive
1.Hive产生背景传统Hadoop架构存在的一些问题:MapReduce编程必须掌握Java,门槛较高传统数据库开发、DBA、运维人员学习门槛高HDFS上没有Schema的概念,仅仅是一个纯文本文件Hive的产生:为了让用户从一个现有数据基础架构转移到Hadoop上现有数据基础架构大多基于关系型数据库和SQL查询Facebook诞生了Hive2.Hive是什么官网:https://hive.ap
- 大数据 ETL 工具 Sqoop 深度解析与实战指南
一、Sqoop核心理论与应用场景1.1设计思想与技术定位Sqoop是Apache旗下的开源数据传输工具,核心设计基于MapReduce分布式计算框架,通过并行化的Map任务实现高效的数据批量迁移。其特点包括:批处理特性:基于MapReduce作业实现导入/导出,适合大规模离线数据迁移,不支持实时数据同步。异构数据源连接:支持关系型数据库(如MySQL、Oracle)与Hadoop生态(HDFS、H
- Hadoop之HDFS
只年
大数据HadoopHDFShadoophdfs大数据
Hadoop之HDFSHDFS的Shell操作启动Hadoop集群(方便后续测试)[atguigu@hadoop102~]$sbin/start-dfs.sh[atguigu@hadoop102~]$sbin/start-yarn.sh-help:输出这个命令参数[atguigu@hadoop102~]$hadoopfs-helprm-ls:显示目录信息[atguigu@hadoop102~]$h
- HDFS中fsimage和edits究竟是什么
清平乐的技术博客
大数据运维hdfshadoop大数据
fsimage和edits是HadoopHDFS(Hadoop分布式文件系统)中的两个关键组件,用于存储文件系统的元数据,以确保文件系统的持久性和一致性。在理解它们的作用之前,我们先了解一下HDFS的基本工作原理。HDFS采用了一种分布式文件系统的架构,其中数据被划分成块并分布在不同的数据节点上,而元数据(文件和目录的信息)则由单独的组件进行管理。元数据的持久性和一致性非常重要,因为文件系统的正确
- 【Hadoop】Hadoop车辆数据存储
db_hjx_2066
javahadoop
Hadoop车辆数据存储本作业旨在实现将车辆数据按天存储到Hadoop分布式文件系统(HDFS)中,并根据数据文件大小分割成多个文件进行存储。数据格式为JSON。作业要求车辆数据按天存储,每天的数据存储在一个文件夹下。数据文件以JSON格式存储。如果数据文件大于100M,则另起一个文件存储。每天的数据总量不少于300M。实现方法1.代码说明以下是用Java编写的实现代码:1.导入类//导入必要的类
- HDFS与HBase有什么关系?
lucky_syq
hdfshbasehadoop
1、HDFS文件存储系统和HBase分布式数据库HDFS是Hadoop分布式文件系统。HBase的数据通常存储在HDFS上。HDFS为HBase提供了高可靠性的底层存储支持。Hbase是Hadoopdatabase,即Hadoop数据库。它是一个适合于非结构化数据存储的数据库,HBase基于列的而不是基于行的模式。
- Hbase和关系型数据库、HDFS、Hive的区别
别这么骄傲
hivehbase数据库
目录1.Hbase和关系型数据库的区别2.Hbase和HDFS的区别3.Hbase和Hive的区别1.Hbase和关系型数据库的区别关系型数据库Hbase存储适合结构化数据,单机存储适合结构化和半结构数据的松散数据,分布式存储功能(1)支持ACID(2)支持join(3)使用主键PK(4)数据类型:int、varchar等(1)仅支持单行事务(2)不支持join,把数据糅合到一张大表(3)行键ro
- 大数据基础知识-Hadoop、HBase、Hive一篇搞定
原来是猪猪呀
hadoop大数据分布式
HadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构,其核心设计包括分布式文件系统(HDFS)和MapReduce编程模型;Hadoop是一个开源的分布式计算框架,旨在帮助用户在不了解分布式底层细节的情况下,开发分布式程序。它通过利用集群的力量,提供高速运算和存储能力,特别适合处理超大数据集的应用程序。Hadoop生态圈Hadoop生态圈是一个由多个基于Hadoop开发的相
- Hadoop、HDFS、Hive、Hbase区别及联系
静心观复
大数据hadoophdfshive
Hadoop、HDFS、Hive和HBase是大数据生态系统中的关键组件,它们都是由Apache软件基金会管理的开源项目。下面将深入解析它们之间的区别和联系。HadoopHadoop是一个开源的分布式计算框架,它允许用户在普通硬件上构建可靠、可伸缩的分布式系统。Hadoop通常指的是整个生态系统,包括HadoopCommon(共享库和工具)、HadoopDistributedFileSystem(
- 大数据(1)-hdfs&hbase
viperrrrrrr
大数据hdfshbase
hbase&hdfs一、体系结构HDFS是一个标准的主从(Master/Slave)体系结构的分布式系统;HDFS集群包含一个或多个NameNode(NameNodeHA会有多个NameNode)和多个DataNode(根据节点情况规划),用户可以通过HDFS客户端同NameNode和DataNode进行交互以访问文件系统。HDFS公开文件系统名称空间,并允许将用户数据存储在文件中。在内部,一个文
- Hadoop入门案例
'Wu'
学习日常大数据hadoophdfs大数据
Hadoop的运行流程:客户端向HDFS请求文件存储或使用MapReduce计算。NameNode负责管理整个HDFS系统中的所有数据块和元数据信息;DataNode则实际存储和管理数据块。客户端通过NameNode查找需要访问或处理的文件所在的DataNode,并将操作请求发送到相应的DataNode上。当客户端上传一个新文件时(比如输入某些日志),它会被分成固定大小(默认64MB)并进行数据复
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- 使用datax进行mysql的表恢复
是桃萌萌鸭~
mysql数据库
DataXDataX是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括MySQL、SQLServer、Oracle、PostgreSQL、HDFS、Hive、HBase、OTS、ODPS等各种异构数据源之间高效的数据同步功能。FeaturesDataX本身作为数据同步框架,将不同数据源的同步抽象为从源头数据源读取数据的Reader插件,以及向目标端写入数据的Writer插件,理论上Dat
- 【头歌】MapReduce基础实战 答案
Seven_Two2
头歌大数据实验答案c#开发语言
本专栏已收集大数据所有答案第1关:成绩统计编程要求使用MapReduce计算班级每个学生的最好成绩,输入文件路径为/user/test/input,请将计算后的结果输出到/user/test/output/目录下。答案:需要先在命令行启动HDFS#命令行start-dfs.sh再在代码文件中写入以下代码#代码文件importjava.io.IOException;importjava.util.S
- HDFS(Hadoop分布式文件系统)总结
Cachel wood
大数据开发hadoophdfs大数据散列表算法哈希算法spark
文章目录一、HDFS概述1.定义与定位2.核心特点二、HDFS架构核心组件1.NameNode(名称节点)2.DataNode(数据节点)3.Client(客户端)4.SecondaryNameNode(辅助名称节点)三、数据存储机制1.数据块(Block)设计2.复制策略(默认复制因子=3)3.数据完整性校验四、文件读写流程1.写入流程2.读取流程五、高可用性(HA)机制1.单点故障解决方案2.
- Hadoop的部分用法
覃炳文20230322027
hadoophive大数据分布式
前言Hadoop是一个由Apache基金会开发的开源框架,它允许跨多个机器使用分布式处理大数据集。Hadoop的核心是HDFS(HadoopDistributedFileSystem)和MapReduce编程模型。1.Hadoop环境搭建在开始使用Hadoop之前,你需要搭建Hadoop环境。这通常包括安装Java、配置Hadoop环境变量、配置Hadoop的配置文件等步骤。1.1环境准备在开始安
- Hadoop 版本进化论:从 1.0 到 2.0,架构革命全解析
拾光师
大数据后端
Hadoop版本hadoop1.x版本由三部分组成Common(辅助工具)HDFS(数据存储)MapReduce(计算和资源调度)存在的问题JobTracker同时具备了资源管理和作业控制两个功能,成为了系统的最大瓶颈采用了master/slave结构,master存在单点问题,一旦master出现故障,会导致整个集群不可用采用了基于槽位的资源分配模型,将槽位分为了Mapslot和Reducesl
- 合并小文件汇总(Hive/Spark)
有数的编程笔记
Spark/Hivehivesparkhadoop
合并小文件的原因:过多的小文件会导致HDFS上元数据负载增加。并且小文件也会导致计算性能下降。1.使用hive时1.1.使用hive.merge参数,开启文件合并--控制在map阶段结束后合并输出的小文件,默认值为trueSEThive.merge.mapfiles=true;--控制在reduce阶段结束后合并输出小文件,默认值为falseSEThive.merge.mapredfiles=tr
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- 探秘Flink Connector加载机制:连接外部世界的幕后引擎
Edingbrugh.南空
flink大数据flink大数据
在Flink的数据处理生态中,SourceFunction负责数据的输入源头,而真正架起Flink与各类外部存储、消息系统桥梁的,则是Connector。从Kafka消息队列到HDFS文件系统,从MySQL数据库到Elasticsearch搜索引擎,Flink通过Connector实现了与多样化外部系统的交互。而这一切交互的基础,都离不开背后强大且精巧的Connector加载机制。接下来,我们将深
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- 时序数据库IoTDB的架构、安装启动方法与数据模式总结
时序数据说
时序数据库iotdb数据库大数据物联网
一、IoTDB的架构IoTDB的架构主要分为三个部分:时序文件(Tsfile):专为时序数据设计的文件存储格式。支持高效的压缩和查询性能。可独立使用,并可通过TsFileSync工具同步至HDFS进行大数据处理。数据库引擎:负责数据的收集、写入、存储和查询等核心功能。分析引擎:可选的分析组件,用于数据处理和分析。二、IoTDB的安装启动方法1.使用环境:需要具备JDK>=1.8的运
- Hadoop等大数据处理框架的Java API
扬子鳄008
Javahadoopjava大数据
Hadoop是一个非常流行的大数据处理框架,主要用于存储和处理大规模数据集。Hadoop主要有两个核心组件:HDFS(HadoopDistributedFileSystem)和MapReduce。此外,还有许多其他组件,如YARN(YetAnotherResourceNegotiator)、HBase、Hive等。下面详细介绍Hadoop及其相关组件的JavaAPI及其使用方法。HadoopHad
- 手把手教你玩转 Sqoop:从数据库到大数据的「数据搬运工」
AAA建材批发王师傅
数据库sqoop大数据hivehdfs
一、Sqoop是什么?——数据界的「超级搬运工」兄弟们,今天咱们聊个大数据圈的「搬运小能手」——Sqoop!可能有人会问:这玩意儿跟Flume啥区别?简单来说:Flume是专门搬日志数据的「快递员」而Sqoop是搬数据库数据的「搬家公司」它的名字咋来的?SQL+Hadoop,直接告诉你核心技能:在关系型数据库(比如MySQL)和Hadoop家族(HDFS、Hive、HBase)之间疯狂倒腾数据!核
- 从 0 到 Offer!大数据核心面试题全解析,答案精准拿捏面试官(hadoop篇)
浅谈星痕
大数据
1.什么是Hadoop?Hadoop是一个开源的分布式系统基础架构,用于存储和处理大规模数据集。它主要包含HDFS(HadoopDistributedFileSystem)分布式文件系统、MapReduce分布式计算框架以及YARN(YetAnotherResourceNegotiator)资源管理器。HDFS负责数据的分布式存储,将大文件分割成多个数据块存储在不同节点上;MapReduce用于分
- 大数据学习(141)-分布式数据库
viperrrrrrr
大数据学习分布式clickhousehdfshbase
在分布式数据库中主要有hdfs、hbase、clickhouse三种。HDFS(HadoopDistributedFileSystem)、HBase和ClickHouse都是处理大数据的分布式系统,但它们的设计目标、架构和适用场景有所不同。一、HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生态系统的一部分,是一个高度容错的系统,适合存储大量数据。它被设计为
- HDFS Federation(联邦) 架构YARN的Capacity Scheduler调度策略 ResourceManager的共享存储具体实现方式
2401_8554978
hdfs架构java
HDFSFederation(联邦)架构什么是HDFSFederation?随着数据量的增长,单一的NameNode成为了HDFS的瓶颈,因为它需要管理整个文件系统的命名空间和所有文件块的位置信息。为了克服这个限制,Hadoop引入了Federation机制,允许一个集群中有多个NameNode/NameSpace,每个NameNode管理一部分文件系统,从而分散负载。优点:提高扩展性:通过增加N
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持