常用排序算法详解(7种算法原理及代码)

相关知识介绍

1、稳定排序和非稳定排序

简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。反之,就是非稳定的。 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变a1,a4,a2,a3,a5就不是稳定的了。

2、内排序和外排序

 在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序的排序方法称为外排序。

3、算法的时间复杂度和空间复杂度

 所谓算法的时间复杂度,是指执行算法所需要的计算工作量。

一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。


一、选择排序
 输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:

 在要排序的一组数中,选出最小的一个数与第一个位置的数交换; 然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环 到倒数第二个数和最后一个数比较为止。 

 选择排序是不稳定的。算法复杂度O(n2)--[n的平方]

void select_sort(int *x, int n)
{
 int i, j, min, t;
 for (i=0; i
二、直接插入排序


 输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:

 在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排 好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
 
 直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]
void insert_sort(int *x, int n)
{
 int i, j, t;
 for (i=1; i=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/
  {
   *(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/
  }
  *(x+j+1) = t; /*找到下标为i的数的放置位置*/
 }
}
三、冒泡排序


 输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:

 在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
 
 下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的位置k,这样可以减少外层循环扫描的次数。


 冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]

void bubble_sort(int *x, int n)
{
 int j, k, h, t;
  
 for (h=n-1; h>0; h=k) /*循环到没有比较范围*/
 {
  for (j=0, k=0; j *(x+j+1)) /*大的放在后面,小的放到前面*/
   {
    t = *(x+j);
    *(x+j) = *(x+j+1);
    *(x+j+1) = t; /*完成交换*/
    k = j; /*保存最后下沉的位置。这样k后面的都是排序排好了的。*/
   }
  }
 }
}
四、希尔排序


 输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:
 
 在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。
 
 下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,以后每次减半,直到增量为1。

 希尔排序是不稳定的。

void shell_sort(int *x, int n)
{
 int h, j, k, t;
 for (h=n/2; h>0; h=h/2) /*控制增量*/
 {
  for (j=h; j=0 && t<*(x+k)); k-=h)
   {
    *(x+k+h) = *(x+k);
   }
   *(x+k+h) = t;
  }
 }
}
五、快速排序


 输入:数组名称(也就是数组首地址)、数组中起止元素的下标

算法思想简单描述:

 快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理 它左右两边的数,直到基准点的左右只有一个元素为止。它是由 C.A.R.Hoare于1962年提出的。
 
 显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的函数是用递归实现的,有兴趣的朋友可以改成非递归的。

 快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)

void quick_sort(int *x, int low, int high)
{
 int i, j, t;
 if (low < high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/
 {
  i = low;
  j = high;
  t = *(x+low); /*暂存基准点的数*/
  while (it) /*在右边的只要比基准点大仍放在右边*/
   {
    j--; /*前移一个位置*/
   }
   if (i
六、堆排序


 输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:

 堆排序是一种树形选择排序,是对直接选择排序的有效改进。堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1(i=1,2,...,n/2) 时称之为堆。在这里只讨论满足前者条件的堆。

 由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序, 使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点 交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点 的堆,并对它们作交换,最后得到有n个节点的有序序列。

 从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

 堆排序是不稳定的。算法时间复杂度O(nlog2n)


(1)渗透建堆
 输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始


void sift(int *x, int n, int s)
{
 int t, k, j;
 t = *(x+s); /*暂存开始元素*/
 k = s;  /*开始元素下标*/
 j = 2*k + 1; /*右子树元素下标*/
 while (j
(2)堆排序
 输入:数组名称(也就是数组首地址)、数组中元素个数


void heap_sort(int *x, int n)
{
 int i, k, t;
 int *p;
 for (i=n/2-1; i>=0; i--)
 {
  sift(x,n,i); /*初始建堆*/
 } 
 
 for (k=n-1; k>=1; k--)
 {
  t = *(x+0); /*堆顶放到最后*/
  *(x+0) = *(x+k);
  *(x+k) = t;
  sift(x,k,0); /*剩下的数再建堆*/ 
 }
}
测试:

void main()
{ 
 #define MAX 4
 int *p, i, a[MAX];
 
 /*录入测试数据*/
 p = a;
 printf("Input %d number for sorting :\n",MAX);
 for (i=0; i






你可能感兴趣的:(数据结构与算法)