function uvo = estimate_flow_demo(method, iSeq, seqName, varargin)
%ESTIMATE_FLOW_DEMO Optical flow estimation demo program
%
% output UV is an M*N*2 matrix. UV(:,:,1) is the horizontal flow and
% UV(:,:,2) is the vertical flow.
%
% Example
% -------
% uv = estimate_flow_demo; or estimate_flow_demo;
% reads the color RubberWhale sequence and uses default parameters and
% default method "Classic+NL-Fast"
%
% same as
% uv = estimate_flow_demo('classic+nl-fast');
%
% uv = estimate_flow_demo('classic+nl-fast', 4, 'middle-other');
%
% uv = estimate_flow_demo('classic+nl-fast', 4, 'middle-other', 'lambda', 3, 'pyramid_levels', 5);
% takes user-defined parameters
%
% Method can be
% 'classic+nl-fast' (default) 'classic+nl' 'classic+nl-full'
% 'classic++' 'classic-c' 'classic-l'/'ba' 'hs'
%
% iSeq can ben 1 to 12: selects the sequence in the following cell arrays to process
% % training data
% SeqName = 'middle-other'
% {'Venus', 'Dimetrodon', 'Hydrangea', 'RubberWhale',...
% 'Grove2', 'Grove3', 'Urban2', 'Urban3', ...
% 'Walking', 'Beanbags', 'DogDance', 'MiniCooper'};
% % test data
% SeqName = 'middle-eval'
% {'Army', 'Mequon', 'Schefflera', 'Wooden', 'Grove', 'Urban', ...
% 'Yosemite', 'Teddy', 'Basketball', 'Evergreen', 'Backyard', 'Dumptruck'};
%
% 'lambda' trade-off (regularization) parameter; larger produces smoother flow fields
% 'sigma_d' parameter of the robust penalty function for the spatial term
% 'sigma_s' parameter of the robust penalty function for the data term
% 'pyramid_levels' pyramid levels for the quadratic formulation; default is automatic
% 'pyramid_spacing' downsampling ratio up each pyramid level for the quadratic formulation; default is 2
% 'gnc_pyramid_levels' pyramid levels for the non-quadratic formulation; default is 2
% 'gnc_pyramid_spacing' downsampling ratio up each pyramid level for the non-quadratic formulation; default is 1.25
%
%
% References:
% -----------
% Sun, D.; Roth, S. & Black, M. J. "Secrets of Optical Flow Estimation and
% Their Principles" IEEE Int. Conf. on Comp. Vision & Pattern Recognition, 2010
%
% Sun, D.; Roth, S. & Black, M. J. "A Quantitative Analysis of Current
% Practices in Optical Flow Estimation and The Principles Behind Them"
% Technical Report Brown-CS-10-03, 2010
%
% Authors: Deqing Sun, Department of Computer Science, Brown University
% Contact: [email protected]
% $Date: $
% $Revision: $
%
% Copyright 2007-2010, Brown University, Providence, RI. USA
%
% All Rights Reserved
%
% All commercial use of this software, whether direct or indirect, is
% strictly prohibited including, without limitation, incorporation into in
% a commercial product, use in a commercial service, or production of other
% artifacts for commercial purposes.
%
% Permission to use, copy, modify, and distribute this software and its
% documentation for research purposes is hereby granted without fee,
% provided that the above copyright notice appears in all copies and that
% both that copyright notice and this permission notice appear in
% supporting documentation, and that the name of the author and Brown
% University not be used in advertising or publicity pertaining to
% distribution of the software without specific, written prior permission.
%
% For commercial uses contact the Technology Venture Office of Brown University
%
% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO
% THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
% FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR
% BROWN UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
% DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
% PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
% ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
% THIS SOFTWARE.
if (~isdeployed)
addpath(genpath('utils'));
end
if nargin < 1
method = 'classic+nl-fast';
iSeq = 4;
seqName = 'middle-other';
%seqName = 'middle-eval';
elseif nargin == 1
iSeq = 4;
seqName = 'middle-other';
end;
[im1, im2, tu, tv] = read_flow_file(seqName, iSeq);
uv = estimate_flow_interface(im1, im2, method, varargin);
% Display estimated flow fields
figure; subplot(1,2,1);imshow(uint8(flowToColor(uv))); title('Middlebury color coding');
subplot(1,2,2); plotflow(uv); title('Vector plot');
if sum(~isnan(tu(:))) > 1
[aae stdae aepe] = flowAngErr(tu, tv, uv(:,:,1), uv(:,:,2), 0); % ignore 0 boundary pixels
fprintf('\nAAE %3.3f average EPE %3.3f \n', aae, aepe);
end;
% Uncomment below and change FN to save the flow fields
% if ~exist(['result/' seqName], 'file');
% mkdir(['result/' seqName]);
% end;
% fn = sprintf('result/%s/estimated_flow_%03d.flo', seqName, iSeq);
% writeFlowFile(uv, fn);
% Uncomment below to read the save flow field
% uv = readFlowFile(fn);
if nargout == 1
uvo = uv;
end;
% Uncomment below to remove 'utils/' to your
% matlab search path
% rmpath(genpath('utils'));
【模式识别】Matlab指纹识别
【图像处理】LSB水印技术
matlab自动识别银行卡号
【基础教程】MATLAB导出高清晰图片
无参考图像质量评价之基于多特征的增强图像质量评价