- OpenCV学习(二十一) :计算图像连通分量:connectedComponents(),connectedComponentsWithStats()
Leon_Chen0
OpenCV
OpenCV学习(二十一):计算图像连通分量:connectedComponents(),connectedComponentsWithStats()1、connectedComponents()函数ConnectedComponents即连通体算法用id标注图中每个连通体,将连通体中序号最小的顶点的id作为连通体的id。如果在图G中,任意2个顶点之间都存在路径,那么称G为连通图,否则称该图为非连
- 数据结构与算法——数据结构4
写代码写到手抽筋
数据结构与算法数据结构
程序员没有稳定一说,目前学习数据结构,其实不难,最近在学习,系统性的总结下,便于后续复习和使用。主要是把线性表,全名为线性存储结构。使用线性表存储数据的方式可以这样理解,即“把所有数据用一根线儿串起来,再存储到物理空间中”。分为顺序表和单链表。顺序表单链表同时还要知道顺序表和链表的优缺点【待补充】还要知道链表反转,知道迭代法和递归法就可以【】还需要知道单链表相交的思路【】后边了解静态链表的原理静态
- (大模型微调大模型学习路线大模型入门)_大模型 学习,吹爆!2025最详细的大模型学习路线已整理!手把手带你高效入门,大模型论文全打通!
大模型老炮
学习人工智能大模型学习AI大模型大模型微调大模型教程
一、初聊大模型1、什么是大模型?大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问
- lvs、nginx、haproxy区别和使用场景?
企鹅侠客
linux聊聊运维lvsnginx运维
0.运维干货分享软考系统架构设计师三科备考经验附学习资料信息安全管理体系(ISMS)制度模板分享免费文档翻译工具(支持word、pdf、ppt、excel)PuTTY中文版安装包MobaXterm中文版安装包pinginfoview网络诊断工具中文版LVS(LinuxVirtualServer)、Nginx和HAProxy都是常见的负载均衡工具,它们在不同的场景中各有优势。以下是它们的区别、特点及
- 【PyTorch】PyTorch 中改变张量形状的几种方法
shengchao0920
pytorch人工智能python
PyTorch中改变张量形状的几种方法在深度学习领域,PyTorch是一个广泛使用的框架,它提供了丰富的API来处理张量(tensor)。在模型开发过程中,我们经常需要改变张量的形状以满足特定的需求。本文将介绍在PyTorch中改变张量形状的几种方法,并给出推荐的使用场景。比如:我们想合并一个张量的最后两个维度。一、方法1.使用reshape方法reshape方法可以改变张量的形状而不改变其数据。
- 图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
- QT基础 QPropertyAnimation简单学习
路奇怪
QT基础qt学习
目录1.简单介绍2.使用步骤3.部分代码示例4.多项说明5.信号反馈6.自定义属性1.定义自定义属性2.使用QPropertyAnimation动画化自定义属性3.连接信号和槽4.注意事项7.更多高级示例1.简单介绍QPropertyAnimation是Qt中的一个类,用于实现属性动画效果。它通过改变对象的属性值来创建动画效果,可以实现平移、旋转、缩放等动画效果。QPropertyAnimatio
- Manus开源平替-开源通用智能体
galileo2016
人工智能
原文链接:https://i68.ltd/notes/posts/250306-opensource-agi-agent/OWL-比Manus还强的全能开源AgentOWL:OptimizedWorkforceLearningforGeneralMulti-AgentAssistanceinReal-WorldTaskAutomation,现实世界中执行自动化任务的通用多代理辅助优化学习框架项目仓
- [Pytorch] Error:module ‘torch‘ has no attribute ‘logical_and‘
江南蜡笔小新
杂记pytorch深度学习神经网络
最近学习的模型用到了这个逻辑与的操作,Pytorch1.3.x报错。查阅官方文档,只有logical_not和logical_xor的实现。但在1.9的文档中有logical_and遂查阅相关更新,得知logical_and在1.5之后的新功能,pytorch更新到>=1.5即可解决问题。1.3.1搜索结果1.5.1搜索结果
- 训练模型时,步长为什么不能太大也不能太小?
yuanpan
人工智能
在训练模型时,步长(也称为学习率,LearningRate)是一个关键的超参数,它控制着每次参数更新的大小。步长既不能太大,也不能太小,原因如下:1.步长太大的问题如果步长过大,会导致以下问题:模型发散(Divergence):参数更新幅度过大,可能导致损失函数的值不断增大,甚至无法收敛,模型性能急剧下降。错过最优解:过大的步长可能导致参数在最优解附近震荡,甚至直接跳过最优解,无法找到良好的模型参
- k8s基础架构介绍
忍界英雄
dockerkubernetes容器云原生
k8s基础架构介绍k8s是对容器进行编排的一种工具。通过k8s可以实现对容器的编排、部署、更新等学习k8s之前,先了解相关的一些使用和配置k8s的一些工具。k8s的常用工具在kubernetes中,主要有三个日常使用的工具,这些工具使用kube前缀命名,这三个工具如下:kubeadm用来初始化集群的指令,能够创建集群,并且添加新的节点。可用其它部署工具替代。具体功能有:初始化集群:在控制平面节点(
- 先学node.js还是php,vue和node先学哪个?
朱佳顺
先学node.js还是php
vue和node应该先学习node,node可以为vue提供包管理工具和模块化管理,可以使vue的开发更加简单快速。所以应该先学习node。vue介绍:Vue.js是web界面的渐进式框架。Vue.js的目标是通过尽可能简单的API实现响应的数据绑定和组合的视图组件。Vue.js自身不是一个全能框架——它只聚焦于视图层。因此它非常容易学习,非常容易与其它库或已有项目整合。另一方面,在与相关工具和支
- OpenAI 团队组织架构和研发技术栈
AI天才研究院
ChatGPT人工智能
OpenAI是一家致力于推动人工智能技术发展的公司,成立于2015年。其目标是确保人工智能技术造福全人类。为了实现这一目标,OpenAI采用了多种先进的技术和组织架构来推动其研发工作。目录OpenAI组织架构和研发技术栈概述1OpenAI团队的世界顶尖科学家IlyaSutskever:Ilya是OpenAI的联合创始人之一,也是深度学习领域的先驱。他在神经网络和深度学习方面的研究具有重要影响,曾与
- 六十天前端强化训练之第十七天React Hooks 入门:useState 深度解析
编程星辰海
#前端前端react.jsjavascript
=====欢迎来到编程星辰海的博客讲解======看完可以给一个免费的三连吗,谢谢大佬!目录一、知识讲解1.Hooks是什么?2.useState的作用3.基本语法解析4.工作原理5.参数详解a)初始值设置方式b)更新函数特性6.注意事项7.类组件对比8.常见问题解答二、核心代码示例三、实现效果四、学习要点总结五、扩展阅读推荐官方文档优质文章推荐学习路径进阶资源六、实践步骤一、表单输入控制二、动态
- 机器学习中的梯度到底是什么?(chat-gpt问答)
湫怿
机器学习gpt人工智能梯度
1、梯度是对损失函数求导吗?是的,梯度是对损失函数(或目标函数)求导数值化后的结果。梯度告诉我们目标函数在某个点上的方向性和变化率,这些信息是优化算法推进参数评估和更新的重要指标。在机器学习中,我们通过不断调整参数,使目标函数达到最小值,从而实现模型的训练和学习。2、为什么梯度要求偏导来求解?梯度是一个向量,它的方向指向函数值增加最快的方向,其大小表示函数值的变化率。为了确定梯度的方向和大小,需要
- 如何用爬虫根据关键词获取商品列表:一份简单易懂的代码示例
API小爬虫
爬虫
在当今数字化时代,网络爬虫已经成为数据收集和分析的强大工具。无论是市场调研、价格监控还是产品分析,爬虫都能帮助我们快速获取大量有价值的信息。今天,我们就来探讨如何通过编写一个简单的爬虫程序,根据关键词获取商品列表。以下是一个基于Python语言的代码示例,适合初学者学习和实践。一、准备工作在开始编写爬虫之前,我们需要准备以下工具和库:Python环境:确保你的电脑上安装了Python。推荐使用Py
- 【51单片机】程序实验17.红外遥控
-一杯为品-
51单片机51单片机mongodb嵌入式硬件
主要参考学习资料:B站【普中官方】51单片机手把手教学视频开发资料下载链接:http://www.prechin.cn/gongsixinwen/208.html单片机套装:普中STC51单片机开发板A4标准版套餐7目录红外遥控介绍红外线简介红外遥控原理红外发射装置红外接收装置硬件设计实验17红外遥控红外接收头驱动主函数红外遥控介绍红外线简介可见光按波长从长到短排列依次为红橙黄绿青蓝紫,其中红光波
- 大型语言模型与强化学习的融合:迈向通用人工智能的新范式——基于基础复现的实验平台构建
(initial)
大模型科普人工智能强化学习
1.引言大型语言模型(LLM)在自然语言处理领域的突破,展现了强大的知识存储、推理和生成能力,为人工智能带来了新的可能性。强化学习(RL)作为一种通过与环境交互学习最优策略的方法,在智能体训练中发挥着重要作用。本文旨在探索LLM与RL的深度融合,分析LLM如何赋能RL,并阐述这种融合对于迈向通用人工智能(AGI)的意义。为了更好地理解这一融合的潜力,我们基于“LargeLanguageModela
- 强化学习-Chapter2-贝尔曼方程
Rsbs
算法机器学习概率论
强化学习-Chapter2-贝尔曼方程贝尔曼方程推导继续展开贝尔曼方程的矩阵形式状态值的求解动作价值函数与状态价值函数的关系贝尔曼方程推导Vπ(s)=E[Gt∣St=s]=E[rt+1+(γrt+2+…)∣St=s]=E[rt+1+γGt+1∣St=s]=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(Rs→s′a+γE[Gt+1∣St+1=s′])=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(R
- 机器学习中的梯度下降是什么意思?
yuanpan
机器学习人工智能
梯度下降(GradientDescent)是机器学习中一种常用的优化算法,用于最小化损失函数(LossFunction)。通过迭代调整模型参数,梯度下降帮助模型逐步逼近最优解,从而提升模型的性能。1.核心思想梯度下降的核心思想是利用损失函数的梯度(即导数)来指导参数的更新方向。具体来说:梯度:梯度是损失函数对模型参数的偏导数,表示损失函数在当前参数点上的变化率。下降:通过沿着梯度的反方向(即损失函
- CIR-DFENet:结合跨模态图像表示和双流特征增强网络进行活动识别
是Dream呀
神经网络计算机视觉人工智能神经网络深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和求职工作的先行者!【优惠信息】•新专栏订阅前200名享9.9元优惠•订阅量破200
- 深度学习-服务器训练SparseDrive过程记录
weixin_40826634
深度学习服务器人工智能
1、cuda安装1.1卸载安装失败的cuda参考:https://blog.csdn.net/weixin_40826634/article/details/127493809注意:因为/usr/local/cuda-xx.x/bin/下没有卸载脚本,很可能是apt安装的,所以通过执行下面的命令删除:apt-get--purgeremove"cuda*"apt-getautoremove然后执行f
- 基于异构特征融合与轻量级集成学习的软件漏洞挖掘方案设计与Python实现
rockmelodies
信息安全网络安全机器学习集成学习python机器学习人工智能
标题:基于异构特征融合与轻量级集成学习的软件漏洞挖掘方案设计与Python实现一、方案设计原理异构特征工程静态特征:基于AST的代码属性图(CPG)解析(使用Joern+NetworkX)动态特征:内存访问模式分析(通过QEMU模拟执行)上下文特征:CWE漏洞模式匹配(集成Semgrep规则引擎)轻量级模型架构
- Java全栈开发学习路线:从基础到实战,掌握前后端与数据库,成为全栈软件工程师
软件职业规划
javajava
1.Java基础Java语法:变量、数据类型、运算符、控制流程(if、switch、循环等)面向对象编程(OOP):类与对象、继承、多态、封装、抽象类、接口异常处理:try-catch-finally、自定义异常集合框架:List、Set、Map、ArrayList、LinkedList、HashMap等泛型:泛型类、泛型方法、泛型接口IO流:文件读写、字节流、字符流多线程:线程创建、同步、锁、线
- 机器学习-----决策树
多巴胺与内啡肽.
机器学习机器学习决策树人工智能
文章目录1、概念2.决策树的构建过程2.1特征选择2.2树的生成2.3树的剪枝3.决策树的优缺点4.决策树的应用4.1分类任务4.2回归任务4.3集成学习代码示例总结1、概念1.1决策树是什么决策树是通过对样本的训练,建立出分类规则,并对新样本进行预测,属于有监督学习。根节点:最上面的节点。叶子节点:能直接看到结果的节点。非叶子节点:位于中间的节点。1.2决策树的类型分类树:用于分类任务,叶节点代
- 机器学习驱动的智能化电池管理技术与应用
萌萌可爱郭德纲
机器学习人工智能
电池管理技术概述电池的工作原理与关键性能指标电池管理系统的核心功能ØSOC估计ØSOH估计Ø寿命预测Ø故障诊断人工智能机器学习基础人工智能的发展机器学习的关键概念机器学习在电池管理中的应用案例介绍人工智能在电池荷电状态估计中的应用荷电状态估计方法概述基于迁移学习的SOC估计(1)基于迁移学习的SOC估计方法数据集、估计框架、估计结果(2)全生命周期下的SOC估计方法数据集、估计框架、估计结果基于数
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 不多 bb,直接来看Java 全栈面试进阶宝典,保底拿下offer
Java程序V
Javajava面试jvm
大家都知道,现在的Java面试是越来越难了!主要原因无非是两个:随着Java这个行业的兴起,不管是在家待业的、对自己现在工作不满意的、大学选错专业的、缺钱的、想自己学的等等这些人绝大部分都是选择了去学习Java!大量人才涌入,导致岗位竞争越来越大,面试也就越来越难!另外一个就是这两年的疫情影响,很多公司都宣布倒闭、裁员。加上互联网行业内卷的推动,面试造火箭工作拧螺丝已经是一个很常见的现象了!最近也
- Ruby学习之命令行选项&环境变量
luyaran
原创Ruby学习之路Ruby命令行选项环境变量
这个ruby文件一般呢都是通过命令行来运行的,语法格式如下:ruby[options][.][programfile][arguments...]解释器可以通过下列选项被调用,来控制解释器的环境和行为,来看下具体数据:选项描述-a与-n或-p一起使用时,可以打开自动拆分模式(autosplitmode)。请查看-n和-p选项。-c只检查语法,不执行程序。-Cdir在执行前改变目录(等价于-X)。-
- 用Python打造智能家居安防系统,让科技守护你的家
Echo_Wish
Python笔记Python算法python智能家居科技
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- sql统计相同项个数并按名次显示
朱辉辉33
javaoracle
现在有如下这样一个表:
A表
ID Name time
------------------------------
0001 aaa 2006-11-18
0002 ccc 2006-11-18
0003 eee 2006-11-18
0004 aaa 2006-11-18
0005 eee 2006-11-18
0004 aaa 2006-11-18
0002 ccc 20
- Android+Jquery Mobile学习系列-目录
白糖_
JQuery Mobile
最近在研究学习基于Android的移动应用开发,准备给家里人做一个应用程序用用。向公司手机移动团队咨询了下,觉得使用Android的WebView上手最快,因为WebView等于是一个内置浏览器,可以基于html页面开发,不用去学习Android自带的七七八八的控件。然后加上Jquery mobile的样式渲染和事件等,就能非常方便的做动态应用了。
从现在起,往后一段时间,我打算
- 如何给线程池命名
daysinsun
线程池
在系统运行后,在线程快照里总是看到线程池的名字为pool-xx,这样导致很不好定位,怎么给线程池一个有意义的名字呢。参照ThreadPoolExecutor类的ThreadFactory,自己实现ThreadFactory接口,重写newThread方法即可。参考代码如下:
public class Named
- IE 中"HTML Parsing Error:Unable to modify the parent container element before the
周凡杨
html解析errorreadyState
错误: IE 中"HTML Parsing Error:Unable to modify the parent container element before the child element is closed"
现象: 同事之间几个IE 测试情况下,有的报这个错,有的不报。经查询资料后,可归纳以下原因。
- java上传
g21121
java
我们在做web项目中通常会遇到上传文件的情况,用struts等框架的会直接用的自带的标签和组件,今天说的是利用servlet来完成上传。
我们这里利用到commons-fileupload组件,相关jar包可以取apache官网下载:http://commons.apache.org/
下面是servlet的代码:
//定义一个磁盘文件工厂
DiskFileItemFactory fact
- SpringMVC配置学习
510888780
springmvc
spring MVC配置详解
现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了。不过要想灵活运用Spring MVC来应对大多数的Web开发,就必须要掌握它的配置及原理。
一、Spring MVC环境搭建:(Spring 2.5.6 + Hi
- spring mvc-jfreeChart 柱图(1)
布衣凌宇
jfreechart
第一步:下载jfreeChart包,注意是jfreeChart文件lib目录下的,jcommon-1.0.23.jar和jfreechart-1.0.19.jar两个包即可;
第二步:配置web.xml;
web.xml代码如下
<servlet>
<servlet-name>jfreechart</servlet-nam
- 我的spring学习笔记13-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java P
- java 线程池使用 Runnable&Callable&Future
antlove
javathreadRunnablecallablefuture
1. 创建线程池
ExecutorService executorService = Executors.newCachedThreadPool();
2. 执行一次线程,调用Runnable接口实现
Future<?> future = executorService.submit(new DefaultRunnable());
System.out.prin
- XML语法元素结构的总结
百合不是茶
xml树结构
1.XML介绍1969年 gml (主要目的是要在不同的机器进行通信的数据规范)1985年 sgml standard generralized markup language1993年 html(www网)1998年 xml extensible markup language
- 改变eclipse编码格式
bijian1013
eclipse编码格式
1.改变整个工作空间的编码格式
改变整个工作空间的编码格式,这样以后新建的文件也是新设置的编码格式。
Eclipse->window->preferences->General->workspace-
- javascript中return的设计缺陷
bijian1013
JavaScriptAngularJS
代码1:
<script>
var gisService = (function(window)
{
return
{
name:function ()
{
alert(1);
}
};
})(this);
gisService.name();
&l
- 【持久化框架MyBatis3八】Spring集成MyBatis3
bit1129
Mybatis3
pom.xml配置
Maven的pom中主要包括:
MyBatis
MyBatis-Spring
Spring
MySQL-Connector-Java
Druid
applicationContext.xml配置
<?xml version="1.0" encoding="UTF-8"?>
&
- java web项目启动时自动加载自定义properties文件
bitray
javaWeb监听器相对路径
创建一个类
public class ContextInitListener implements ServletContextListener
使得该类成为一个监听器。用于监听整个容器生命周期的,主要是初始化和销毁的。
类创建后要在web.xml配置文件中增加一个简单的监听器配置,即刚才我们定义的类。
<listener>
<des
- 用nginx区分文件大小做出不同响应
ronin47
昨晚和前21v的同事聊天,说到我离职后一些技术上的更新。其中有个给某大客户(游戏下载类)的特殊需求设计,因为文件大小差距很大——估计是大版本和补丁的区别——又走的是同一个域名,而squid在响应比较大的文件时,尤其是初次下载的时候,性能比较差,所以拆成两组服务器,squid服务于较小的文件,通过pull方式从peer层获取,nginx服务于较大的文件,通过push方式由peer层分发同步。外部发布
- java-67-扑克牌的顺子.从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2-10为数字本身,A为1,J为11,Q为12,K为13,而大
bylijinnan
java
package com.ljn.base;
import java.util.Arrays;
import java.util.Random;
public class ContinuousPoker {
/**
* Q67 扑克牌的顺子 从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。
* 2-10为数字本身,A为1,J为1
- 翟鸿燊老师语录
ccii
翟鸿燊
一、国学应用智慧TAT之亮剑精神A
1. 角色就是人格
就像你一回家的时候,你一进屋里面,你已经是儿子,是姑娘啦,给老爸老妈倒怀水吧,你还觉得你是老总呢?还拿派呢?就像今天一样,你们往这儿一坐,你们之间是什么,同学,是朋友。
还有下属最忌讳的就是领导向他询问情况的时候,什么我不知道,我不清楚,该你知道的你凭什么不知道
- [光速与宇宙]进行光速飞行的一些问题
comsci
问题
在人类整体进入宇宙时代,即将开展深空宇宙探索之前,我有几个猜想想告诉大家
仅仅是猜想。。。未经官方证实
1:要在宇宙中进行光速飞行,必须首先获得宇宙中的航行通行证,而这个航行通行证并不是我们平常认为的那种带钢印的证书,是什么呢? 下面我来告诉
- oracle undo解析
cwqcwqmax9
oracle
oracle undo解析2012-09-24 09:02:01 我来说两句 作者:虫师收藏 我要投稿
Undo是干嘛用的? &nb
- java中各种集合的详细介绍
dashuaifu
java集合
一,java中各种集合的关系图 Collection 接口的接口 对象的集合 ├ List 子接口 &n
- 卸载windows服务的方法
dcj3sjt126com
windowsservice
卸载Windows服务的方法
在Windows中,有一类程序称为服务,在操作系统内核加载完成后就开始加载。这里程序往往运行在操作系统的底层,因此资源占用比较大、执行效率比较高,比较有代表性的就是杀毒软件。但是一旦因为特殊原因不能正确卸载这些程序了,其加载在Windows内的服务就不容易删除了。即便是删除注册表中的相 应项目,虽然不启动了,但是系统中仍然存在此项服务,只是没有加载而已。如果安装其他
- Warning: The Copy Bundle Resources build phase contains this target's Info.plist
dcj3sjt126com
iosxcode
http://developer.apple.com/iphone/library/qa/qa2009/qa1649.html
Excerpt:
You are getting this warning because you probably added your Info.plist file to your Copy Bundle
- 2014之C++学习笔记(一)
Etwo
C++EtwoEtwoiterator迭代器
已经有很长一段时间没有写博客了,可能大家已经淡忘了Etwo这个人的存在,这一年多以来,本人从事了AS的相关开发工作,但最近一段时间,AS在天朝的没落,相信有很多码农也都清楚,现在的页游基本上达到饱和,手机上的游戏基本被unity3D与cocos占据,AS基本没有容身之处。so。。。最近我并不打算直接转型
- js跨越获取数据问题记录
haifengwuch
jsonpjsonAjax
js的跨越问题,普通的ajax无法获取服务器返回的值。
第一种解决方案,通过getson,后台配合方式,实现。
Java后台代码:
protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
String ca
- 蓝色jQuery导航条
ini
JavaScripthtmljqueryWebhtml5
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/39.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery鼠标悬停上下滑动导航条 - 柯乐义<
- linux部署jdk,tomcat,mysql
kerryg
jdktomcatlinuxmysql
1、安装java环境jdk:
一般系统都会默认自带的JDK,但是不太好用,都会卸载了,然后重新安装。
1.1)、卸载:
(rpm -qa :查询已经安装哪些软件包;
rmp -q 软件包:查询指定包是否已
- DOMContentLoaded VS onload VS onreadystatechange
mutongwu
jqueryjs
1. DOMContentLoaded 在页面html、script、style加载完毕即可触发,无需等待所有资源(image/iframe)加载完毕。(IE9+)
2. onload是最早支持的事件,要求所有资源加载完毕触发。
3. onreadystatechange 开始在IE引入,后来其它浏览器也有一定的实现。涉及以下 document , applet, embed, fra
- sql批量插入数据
qifeifei
批量插入
hi,
自己在做工程的时候,遇到批量插入数据的数据修复场景。我的思路是在插入前准备一个临时表,临时表的整理就看当时的选择条件了,临时表就是要插入的数据集,最后再批量插入到数据库中。
WITH tempT AS (
SELECT
item_id AS combo_id,
item_id,
now() AS create_date
FROM
a
- log4j打印日志文件 如何实现相对路径到 项目工程下
thinkfreer
Weblog4j应用服务器日志
最近为了实现统计一个网站的访问量,记录用户的登录信息,以方便站长实时了解自己网站的访问情况,选择了Apache 的log4j,但是在选择相对路径那块 卡主了,X度了好多方法(其实大多都是一样的内用,还一个字都不差的),都没有能解决问题,无奈搞了2天终于解决了,与大家分享一下
需求:
用户登录该网站时,把用户的登录名,ip,时间。统计到一个txt文档里,以方便其他系统调用此txt。项目名
- linux下mysql-5.6.23.tar.gz安装与配置
笑我痴狂
mysqllinuxunix
1.卸载系统默认的mysql
[root@localhost ~]# rpm -qa | grep mysql
mysql-libs-5.1.66-2.el6_3.x86_64
mysql-devel-5.1.66-2.el6_3.x86_64
mysql-5.1.66-2.el6_3.x86_64
[root@localhost ~]# rpm -e mysql-libs-5.1