计算相关性,高度/中等/轻微/不相关

import sys
import numpy as np
from scipy.stats.stats import pearsonr   

X = np.loadtxt(open(sys.argv[1],"r"),delimiter="\t")  
XT=X.T


highlist=[]
midlist=[]
lowlist=[]
nonlist=[]

highdict={}
middict={}
lowdict={}
nondict={}

constlist=[]
constc=0
#print(XT.shape)
for i in range(1,XT.shape[0]):
    if np.max(XT[i])==np.min(XT[i]):
        print 'constan para:',i
        constc+=1
        constlist.append(i)
    else:
        tmpres = pearsonr(XT[0],XT[i])[0]    
        print i,tmpres
        if abs(tmpres)>0.8:
            highlist.append(i)
            highdict[i]=tmpres
        elif abs(tmpres)>0.4:
            midlist.append(i)
            middict[i]=tmpres
            #print i,attrlist[i],tmpres
        elif abs(tmpres)>0.3:
            lowlist.append(i)            
            lowdict[i]=tmpres
        else:
            nonlist.append(i)           
            nondict[i]=tmpres

 

你可能感兴趣的:(计算相关性,高度/中等/轻微/不相关)