(大佬)睿智的目标检测29——Keras搭建YoloV4目标检测平台

原文链接:https://blog.csdn.net/weixin_44791964/article/details/106014717

睿智的目标检测29——Keras搭建YoloV4目标检测平台

  • 学习前言
  • 什么是YOLOV4
  • 代码下载
  • YOLOV4改进的部分(不完全)
  • YOLOV4结构解析
    • 1、主干特征提取网络Backbone
    • 2、特征金字塔
    • 3、YoloHead利用获得到的特征进行预测
    • 4、预测结果的解码
    • 5、在原图上进行绘制
  • YOLOV4的训练
    • 1、YOLOV4的改进训练技巧
      • a)、Mosaic数据增强
      • b)、Label Smoothing平滑
      • c)、CIOU
      • d)、学习率余弦退火衰减
    • 2、loss组成
      • a)、计算loss所需参数
      • b)、y_pre是什么
      • c)、y_true是什么。
      • d)、loss的计算过程
  • 训练自己的YOLOV4模型

学习前言

哈哈哈我最喜欢的YOLO更新了!
在这里插入图片描述

什么是YOLOV4

在这里插入图片描述
YOLOV4是YOLOV3的改进版,在YOLOV3的基础上结合了非常多的小Tricks。
尽管没有目标检测上革命性的改变,但是YOLOV4依然很好的结合了速度与精度。
根据上图也可以看出来,YOLOV4在YOLOV3的基础上,在FPS不下降的情况下,mAP达到了44,提高非常明显。

YOLOV4整体上的检测思路和YOLOV3相比相差并不大,都是使用三个特征层进行分类与回归预测。

请注意!

强烈建议在学习YOLOV4之前学习YOLOV3,因为YOLOV4确实可以看作是YOLOV3结合一系列改进的版本!

强烈建议在学习YOLOV4之前学习YOLOV3,因为YOLOV4确实可以看作是YOLOV3结合一系列改进的版本!

强烈建议在学习YOLOV4之前学习YOLOV3,因为YOLOV4确实可以看作是YOLOV3结合一系列改进的版本!

(重要的事情说三遍!)

YOLOV3可参考该博客:
https://blog.csdn.net/weixin_44791964/article/details/103276106

代码下载

https://github.com/bubbliiiing/yolov4-keras
喜欢的可以给个star噢!

哔哩哔哩视频地址:
https://www.bilibili.com/video/BV1kt4y117G6

YOLOV4改进的部分(不完全)

1、主干特征提取网络:DarkNet53 => CSPDarkNet53

2、特征金字塔:SPP,PAN

3、分类回归层:YOLOv3(未改变)

4、训练用到的小技巧:Mosaic数据增强、Label Smoothing平滑、CIOU、学习率余弦退火衰减

5、激活函数:使用Mish激活函数

以上并非全部的改进部分,还存在一些其它的改进,由于YOLOV4使用的改进实在太多了,很难完全实现与列出来,这里只列出来了一些我比较感兴趣,而且非常有效的改进。

整篇BLOG会结合YOLOV3与YOLOV4的差别进行解析

YOLOV4结构解析

1、主干特征提取网络Backbone

当输入是416x416时,特征结构如下:
在这里插入图片描述
当输入是608x608时,特征结构如下:
在这里插入图片描述
主干特征提取网络Backbone的改进点有两个:
a).主干特征提取网络:DarkNet53 => CSPDarkNet53
b).激活函数:使用Mish激活函数

如果大家对YOLOV3比较熟悉的话,应该知道Darknet53的结构,其由一系列残差网络结构构成。在Darknet53中,其存在如下resblock_body模块,其由一次下采样多次残差结构的堆叠构成,Darknet53便是由resblock_body模块组合而成

def resblock_body(x, num_filters, num_blocks):
    x = ZeroPadding2D(((1,0),(1,0)))(x)
    x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x)
    for i in range(num_blocks):
        y = DarknetConv2D_BN_Leaky(num_filters//2, (1,1))(x)
        y = DarknetConv2D_BN_Leaky(num_filters, (3,3))(y)
        x = Add()([x,y])
    return x

     
     
     
     
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

而在YOLOV4中,其对该部分进行了一定的修改。
1、其一是将DarknetConv2D的激活函数由LeakyReLU修改成了Mish,卷积块由DarknetConv2D_BN_Leaky变成了DarknetConv2D_BN_Mish
Mish函数的公式与图像如下:
M i s h = x × t a n h ( l n ( 1 + e x ) ) M i s h = x × t a n h ( l n ( 1 + e x ) ) M i s h = x × t a n h ( l n ( 1 + e x ) ) Mish=x×tanh(ln(1+ex))Mish=x×tanh(ln(1+ex)) Mish=x \times tanh(ln(1+e^x)) Mish=x×tanh(ln(1+ex))Mish=x×tanh(ln(1+ex))Mish=x×tanh(ln(1+ex))Mish=x×tanh(ln(1+ex))
在这里插入图片描述
2、其二是将resblock_body的结构进行修改,使用了CSPnet结构。此时YOLOV4当中的Darknet53被修改成了CSPDarknet53
在这里插入图片描述
CSPnet结构并不算复杂,就是将原来的残差块的堆叠进行了一个拆分,拆成左右两部分:
主干部分继续进行原来的残差块的堆叠
另一部分则像一个残差边一样,经过少量处理直接连接到最后。
因此可以认为CSP中存在一个大的残差边。

#---------------------------------------------------#
#   CSPdarknet的结构块
#   存在一个大残差边
#   这个大残差边绕过了很多的残差结构
#---------------------------------------------------#
def resblock_body(x, num_filters, num_blocks, all_narrow=True):
    # 进行长和宽的压缩
    preconv1 = ZeroPadding2D(((1,0),(1,0)))(x)
    preconv1 = DarknetConv2D_BN_Mish(num_filters, (3,3), strides=(2,2))(preconv1)
# 生成一个大的残差边 
shortconv = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(preconv1)

# 主干部分的卷积
mainconv = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(preconv1)
# 1x1卷积对通道数进行整合->3x3卷积提取特征,使用残差结构
for i in range(num_blocks):
    y = compose(
            DarknetConv2D_BN_Mish(num_filters//2, (1,1)),
            DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (3,3)))(mainconv)
    mainconv = Add()([mainconv,y])
# 1x1卷积后和残差边堆叠
postconv = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(mainconv)
route = Concatenate()([postconv, shortconv])

# 最后对通道数进行整合
return DarknetConv2D_BN_Mish(num_filters, (1,1))(route)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

全部实现代码为:

from functools import wraps
from keras import backend as K
from keras.layers import Conv2D, Add, ZeroPadding2D, UpSampling2D, Concatenate, MaxPooling2D, Layer
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.normalization import BatchNormalization
from keras.regularizers import l2
from utils.utils import compose

class Mish(Layer):
def init(self, kwargs):
super(Mish, self).init(kwargs)
self.supports_masking = True

def call(self, inputs):
    return inputs * K.tanh(K.softplus(inputs))

def get_config(self):
    config = super(Mish, self).get_config()
    return config

def compute_output_shape(self, input_shape):
    return input_shape

#--------------------------------------------------#
# 单次卷积
#--------------------------------------------------#
@wraps(Conv2D)
def DarknetConv2D(args, **kwargs):
darknet_conv_kwargs = {‘kernel_regularizer’: l2(5e-4)}
darknet_conv_kwargs[‘padding’] = ‘valid’ if kwargs.get(‘strides’)==(2,2) else ‘same’
darknet_conv_kwargs.update(kwargs)
return Conv2D(args, **darknet_conv_kwargs)

#---------------------------------------------------#
# 卷积块
# DarknetConv2D + BatchNormalization + Mish
#---------------------------------------------------#
def DarknetConv2D_BN_Mish(args, **kwargs):
no_bias_kwargs = {‘use_bias’: False}
no_bias_kwargs.update(kwargs)
return compose(
DarknetConv2D(args, **no_bias_kwargs),
BatchNormalization(),
Mish())

#---------------------------------------------------#
# CSPdarknet的结构块
# 存在一个大残差边
# 这个大残差边绕过了很多的残差结构
#---------------------------------------------------#
def resblock_body(x, num_filters, num_blocks, all_narrow=True):
# 进行长和宽的压缩
preconv1 = ZeroPadding2D(((1,0),(1,0)))(x)
preconv1 = DarknetConv2D_BN_Mish(num_filters, (3,3), strides=(2,2))(preconv1)

# 生成一个大的残差边 
shortconv = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(preconv1)

# 主干部分的卷积
mainconv = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(preconv1)
# 1x1卷积对通道数进行整合->3x3卷积提取特征,使用残差结构
for i in range(num_blocks):
    y = compose(
            DarknetConv2D_BN_Mish(num_filters//2, (1,1)),
            DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (3,3)))(mainconv)
    mainconv = Add()([mainconv,y])
# 1x1卷积后和残差边堆叠
postconv = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(mainconv)
route = Concatenate()([postconv, shortconv])

# 最后对通道数进行整合
return DarknetConv2D_BN_Mish(num_filters, (1,1))(route)

#---------------------------------------------------#
# CSPdarknet53 的主体部分
#---------------------------------------------------#
def darknet_body(x):
x = DarknetConv2D_BN_Mish(32, (3,3))(x)
x = resblock_body(x, 64, 1, False)
x = resblock_body(x, 128, 2)
x = resblock_body(x, 256, 8)
feat1 = x
x = resblock_body(x, 512, 8)
feat2 = x
x = resblock_body(x, 1024, 4)
feat3 = x
return feat1,feat2,feat3

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87

2、特征金字塔

当输入是416x416时,特征结构如下:
在这里插入图片描述
当输入是608x608时,特征结构如下:
在这里插入图片描述
在特征金字塔部分,YOLOV4结合了两种改进:
a).使用了SPP结构。
b).使用了PANet结构。

如上图所示,除去CSPDarknet53和Yolo Head的结构外,都是特征金字塔的结构。
1、SPP结构参杂在对CSPdarknet53的最后一个特征层的卷积里,在对CSPdarknet53的最后一个特征层进行三次DarknetConv2D_BN_Leaky卷积后分别利用四个不同尺度的最大池化进行处理,最大池化的池化核大小分别为13x13、9x9、5x5、1x1(1x1即无处理)

# 使用了SPP结构,即不同尺度的最大池化后堆叠。
maxpool1 = MaxPooling2D(pool_size=(13,13), strides=(1,1), padding='same')(P5)
maxpool2 = MaxPooling2D(pool_size=(9,9), strides=(1,1), padding='same')(P5)
maxpool3 = MaxPooling2D(pool_size=(5,5), strides=(1,1), padding='same')(P5)
P5 = Concatenate()([maxpool1, maxpool2, maxpool3, P5])

   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5

其可以它能够极大地增加感受野,分离出最显著的上下文特征
在这里插入图片描述
2、PANet是2018的一种实例分割算法,其具体结构由反复提升特征的意思。
在这里插入图片描述
上图为原始的PANet的结构,可以看出来其具有一个非常重要的特点就是特征的反复提取
在(a)里面是传统的特征金字塔结构,在完成特征金字塔从下到上的特征提取后,还需要实现(b)中从上到下的特征提取。

而在YOLOV4当中,其主要是在三个有效特征层上使用了PANet结构。
在这里插入图片描述
实现代码如下:

#---------------------------------------------------#
#   特征层->最后的输出
#---------------------------------------------------#
def yolo_body(inputs, num_anchors, num_classes):
    # 生成darknet53的主干模型
    feat1,feat2,feat3 = darknet_body(inputs)
P5 = DarknetConv2D_BN_Leaky(512, (1,1))(feat3)
P5 = DarknetConv2D_BN_Leaky(1024, (3,3))(P5)
P5 = DarknetConv2D_BN_Leaky(512, (1,1))(P5)
# 使用了SPP结构,即不同尺度的最大池化后堆叠。
maxpool1 = MaxPooling2D(pool_size=(13,13), strides=(1,1), padding='same')(P5)
maxpool2 = MaxPooling2D(pool_size=(9,9), strides=(1,1), padding='same')(P5)
maxpool3 = MaxPooling2D(pool_size=(5,5), strides=(1,1), padding='same')(P5)
P5 = Concatenate()([maxpool1, maxpool2, maxpool3, P5])
P5 = DarknetConv2D_BN_Leaky(512, (1,1))(P5)
P5 = DarknetConv2D_BN_Leaky(1024, (3,3))(P5)
P5 = DarknetConv2D_BN_Leaky(512, (1,1))(P5)

P5_upsample = compose(DarknetConv2D_BN_Leaky(256, (1,1)), UpSampling2D(2))(P5)

P4 = DarknetConv2D_BN_Leaky(256, (1,1))(feat2)
P4 = Concatenate()([P4, P5_upsample])
P4 = make_five_convs(P4,256)

P4_upsample = compose(DarknetConv2D_BN_Leaky(128, (1,1)), UpSampling2D(2))(P4)

P3 = DarknetConv2D_BN_Leaky(128, (1,1))(feat1)
P3 = Concatenate()([P3, P4_upsample])
P3 = make_five_convs(P3,128)

# 76x76的out
P3_output = DarknetConv2D_BN_Leaky(256, (3,3))(P3)
P3_output = DarknetConv2D(num_anchors*(num_classes+5), (1,1))(P3_output)

P3_downsample = ZeroPadding2D(((1,0),(1,0)))(P3)
P3_downsample = DarknetConv2D_BN_Leaky(256, (3,3), strides=(2,2))(P3_downsample)
P4 = Concatenate()([P3_downsample, P4])
P4 = make_five_convs(P4,256)

# 38x38的out
P4_output = DarknetConv2D_BN_Leaky(512, (3,3))(P4)
P4_output = DarknetConv2D(num_anchors*(num_classes+5), (1,1))(P4_output)


P4_downsample = ZeroPadding2D(((1,0),(1,0)))(P4)
P4_downsample = DarknetConv2D_BN_Leaky(512, (3,3), strides=(2,2))(P4_downsample)
P5 = Concatenate()([P4_downsample, P5])
P5 = make_five_convs(P5,512)

# 19x19的out
P5_output = DarknetConv2D_BN_Leaky(1024, (3,3))(P5)
P5_output = DarknetConv2D(num_anchors*(num_classes+5), (1,1))(P5_output)

return Model(inputs, [P5_output, P4_output, P3_output])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

3、YoloHead利用获得到的特征进行预测

当输入是416x416时,特征结构如下:
在这里插入图片描述
当输入是608x608时,特征结构如下:
在这里插入图片描述
1、在特征利用部分,YoloV4提取多特征层进行目标检测,一共提取三个特征层,分别位于中间层,中下层,底层,三个特征层的shape分别为(76,76,256)、(38,38,512)、(19,19,1024)。

2、输出层的shape分别为(19,19,75),(38,38,75),(76,76,75),最后一个维度为75是因为该图是基于voc数据集的,它的类为20种,YoloV4只有针对每一个特征层存在3个先验框,所以最后维度为3x25;
如果使用的是coco训练集,类则为80种,最后的维度应该为255 = 3x85
,三个特征层的shape为(19,19,255),(38,38,255),(76,76,255)

实现代码如下:

#---------------------------------------------------#
#   特征层->最后的输出
#---------------------------------------------------#
def yolo_body(inputs, num_anchors, num_classes):
# 省略了一部分,只看最后的head部分
    P3_output = DarknetConv2D_BN_Leaky(256, (3,3))(P3)
    P3_output = DarknetConv2D(num_anchors*(num_classes+5), (1,1))(P3_output)
P4_output = DarknetConv2D_BN_Leaky(512, (3,3))(P4)
P4_output = DarknetConv2D(num_anchors*(num_classes+5), (1,1))(P4_output)

P5_output = DarknetConv2D_BN_Leaky(1024, (3,3))(P5)
P5_output = DarknetConv2D(num_anchors*(num_classes+5), (1,1))(P5_output)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

4、预测结果的解码

由第二步我们可以获得三个特征层的预测结果,shape分别为(N,19,19,255),(N,38,38,255),(N,76,76,255)的数据,对应每个图分为19x19、38x38、76x76的网格上3个预测框的位置。

但是这个预测结果并不对应着最终的预测框在图片上的位置,还需要解码才可以完成。

此处要讲一下yolo3的预测原理,yolo3的3个特征层分别将整幅图分为19x19、38x38、76x76的网格,每个网络点负责一个区域的检测。

我们知道特征层的预测结果对应着三个预测框的位置,我们先将其reshape一下,其结果为(N,19,19,3,85),(N,38,38,3,85),(N,76,76,3,85)。

最后一个维度中的85包含了4+1+80,分别代表x_offset、y_offset、h和w、置信度、分类结果。

yolo3的解码过程就是将每个网格点加上它对应的x_offset和y_offset,加完后的结果就是预测框的中心,然后再利用 先验框和h、w结合 计算出预测框的长和宽。这样就能得到整个预测框的位置了。

在这里插入图片描述
当然得到最终的预测结构后还要进行得分排序与非极大抑制筛选
这一部分基本上是所有目标检测通用的部分。不过该项目的处理方式与其它项目不同。其对于每一个类进行判别。
1、取出每一类得分大于self.obj_threshold的框和得分。
2、利用框的位置和得分进行非极大抑制。

实现代码如下,当调用yolo_eval时,就会对每个特征层进行解码:

#---------------------------------------------------#
#   将预测值的每个特征层调成真实值
#---------------------------------------------------#
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    num_anchors = len(anchors)
    # [1, 1, 1, num_anchors, 2]
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])
# 获得x,y的网格
# (19, 19, 1, 2)
grid_shape = K.shape(feats)[1:3] # height, width
grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
    [1, grid_shape[1], 1, 1])
grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
    [grid_shape[0], 1, 1, 1])
grid = K.concatenate([grid_x, grid_y])
grid = K.cast(grid, K.dtype(feats))

# (batch_size,19,19,3,85)
feats = K.reshape(feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

# 将预测值调成真实值
# box_xy对应框的中心点
# box_wh对应框的宽和高
box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))
box_confidence = K.sigmoid(feats[..., 4:5])
box_class_probs = K.sigmoid(feats[..., 5:])

# 在计算loss的时候返回如下参数
if calc_loss == True:
    return grid, feats, box_xy, box_wh
return box_xy, box_wh, box_confidence, box_class_probs

#---------------------------------------------------#
# 对box进行调整,使其符合真实图片的样子
#---------------------------------------------------#
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
box_yx = box_xy[..., ::-1]
box_hw = box_wh[..., ::-1]

input_shape = K.cast(input_shape, K.dtype(box_yx))
image_shape = K.cast(image_shape, K.dtype(box_yx))

new_shape = K.round(image_shape * K.min(input_shape/image_shape))
offset = (input_shape-new_shape)/2./input_shape
scale = input_shape/new_shape

box_yx = (box_yx - offset) * scale
box_hw *= scale

box_mins = box_yx - (box_hw / 2.)
box_maxes = box_yx + (box_hw / 2.)
boxes =  K.concatenate([
    box_mins[..., 0:1],  # y_min
    box_mins[..., 1:2],  # x_min
    box_maxes[..., 0:1],  # y_max
    box_maxes[..., 1:2]  # x_max
])

boxes *= K.concatenate([image_shape, image_shape])
return boxes

#---------------------------------------------------#
# 获取每个box和它的得分
#---------------------------------------------------#
def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape):
# 将预测值调成真实值
# box_xy对应框的中心点
# box_wh对应框的宽和高
# -1,19,19,3,2; -1,19,19,3,2; -1,19,19,3,1; -1,19,19,3,80
box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats, anchors, num_classes, input_shape)
# 将box_xy、和box_wh调节成y_min,y_max,xmin,xmax
boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)
# 获得得分和box
boxes = K.reshape(boxes, [-1, 4])
box_scores = box_confidence * box_class_probs
box_scores = K.reshape(box_scores, [-1, num_classes])
return boxes, box_scores

#---------------------------------------------------#
# 图片预测
#---------------------------------------------------#
def yolo_eval(yolo_outputs,
anchors,
num_classes,
image_shape,
max_boxes=20,
score_threshold=.6,
iou_threshold=.5):
# 获得特征层的数量
num_layers = len(yolo_outputs)
# 特征层1对应的anchor是678
# 特征层2对应的anchor是345
# 特征层3对应的anchor是012
anchor_mask = [[6,7,8], [3,4,5], [0,1,2]]

input_shape = K.shape(yolo_outputs[0])[1:3] * 32
boxes = []
box_scores = []
# 对每个特征层进行处理
for l in range(num_layers):
    _boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l], anchors[anchor_mask[l]], num_classes, input_shape, image_shape)
    boxes.append(_boxes)
    box_scores.append(_box_scores)
# 将每个特征层的结果进行堆叠
boxes = K.concatenate(boxes, axis=0)
box_scores = K.concatenate(box_scores, axis=0)

mask = box_scores >= score_threshold
max_boxes_tensor = K.constant(max_boxes, dtype='int32')
boxes_ = []
scores_ = []
classes_ = []
for c in range(num_classes):
    # 取出所有box_scores >= score_threshold的框,和成绩
    class_boxes = tf.boolean_mask(boxes, mask[:, c])
    class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])

    # 非极大抑制,去掉box重合程度高的那一些
    nms_index = tf.image.non_max_suppression(
        class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold)

    # 获取非极大抑制后的结果
    # 下列三个分别是
    # 框的位置,得分与种类
    class_boxes = K.gather(class_boxes, nms_index)
    class_box_scores = K.gather(class_box_scores, nms_index)
    classes = K.ones_like(class_box_scores, 'int32') * c
    boxes_.append(class_boxes)
    scores_.append(class_box_scores)
    classes_.append(classes)
boxes_ = K.concatenate(boxes_, axis=0)
scores_ = K.concatenate(scores_, axis=0)
classes_ = K.concatenate(classes_, axis=0)

return boxes_, scores_, classes_
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137

5、在原图上进行绘制

通过第四步,我们可以获得预测框在原图上的位置,而且这些预测框都是经过筛选的。这些筛选后的框可以直接绘制在图片上,就可以获得结果了。

YOLOV4的训练

1、YOLOV4的改进训练技巧

a)、Mosaic数据增强

Yolov4的mosaic数据增强参考了CutMix数据增强方式,理论上具有一定的相似性!
CutMix数据增强方式利用两张图片进行拼接。
在这里插入图片描述
但是mosaic利用了四张图片,根据论文所说其拥有一个巨大的优点是丰富检测物体的背景!且在BN计算的时候一下子会计算四张图片的数据!
就像下图这样:

实现思路如下:
1、每次读取四张图片。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2、分别对四张图片进行翻转、缩放、色域变化等,并且按照四个方向位置摆好。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3、进行图片的组合和框的组合
在这里插入图片描述

def rand(a=0, b=1):
    return np.random.rand()*(b-a) + a

def merge_bboxes(bboxes, cutx, cuty):

merge_bbox = []
for i in range(len(bboxes)):
    for box in bboxes[i]:
        tmp_box = []
        x1,y1,x2,y2 = box[0], box[1], box[2], box[3]

        if i == 0:
            if y1 > cuty or x1 > cutx:
                continue
            if y2 >= cuty and y1 <= cuty:
                y2 = cuty
                if y2-y1 < 5:
                    continue
            if x2 >= cutx and x1 <= cutx:
                x2 = cutx
                if x2-x1 < 5:
                    continue
            
        if i == 1:
            if y2 < cuty or x1 > cutx:
                continue

            if y2 >= cuty and y1 <= cuty:
                y1 = cuty
                if y2-y1 < 5:
                    continue
            
            if x2 >= cutx and x1 <= cutx:
                x2 = cutx
                if x2-x1 < 5:
                    continue

        if i == 2:
            if y2 < cuty or x2 < cutx:
                continue

            if y2 >= cuty and y1 <= cuty:
                y1 = cuty
                if y2-y1 < 5:
                    continue

            if x2 >= cutx and x1 <= cutx:
                x1 = cutx
                if x2-x1 < 5:
                    continue

        if i == 3:
            if y1 > cuty or x2 < cutx:
                continue

            if y2 >= cuty and y1 <= cuty:
                y2 = cuty
                if y2-y1 < 5:
                    continue

            if x2 >= cutx and x1 <= cutx:
                x1 = cutx
                if x2-x1 < 5:
                    continue

        tmp_box.append(x1)
        tmp_box.append(y1)
        tmp_box.append(x2)
        tmp_box.append(y2)
        tmp_box.append(box[-1])
        merge_bbox.append(tmp_box)
return merge_bbox

def get_random_data(annotation_line, input_shape, random=True, hue=.1, sat=1.5, val=1.5, proc_img=True):
‘’‘random preprocessing for real-time data augmentation’’’
h, w = input_shape
min_offset_x = 0.4
min_offset_y = 0.4
scale_low = 1-min(min_offset_x,min_offset_y)
scale_high = scale_low+0.2

image_datas = [] 
box_datas = []
index = 0

place_x = [0,0,int(w*min_offset_x),int(w*min_offset_x)]
place_y = [0,int(h*min_offset_y),int(w*min_offset_y),0]
for line in annotation_line:
    # 每一行进行分割
    line_content = line.split()
    # 打开图片
    image = Image.open(line_content[0])
    image = image.convert("RGB") 
    # 图片的大小
    iw, ih = image.size
    # 保存框的位置
    box = np.array([np.array(list(map(int,box.split(',')))) for box in line_content[1:]])
    
    # image.save(str(index)+".jpg")
    # 是否翻转图片
    flip = rand()<.5
    if flip and len(box)>0:
        image = image.transpose(Image.FLIP_LEFT_RIGHT)
        box[:, [0,2]] = iw - box[:, [2,0]]

    # 对输入进来的图片进行缩放
    new_ar = w/h
    scale = rand(scale_low, scale_high)
    if new_ar < 1:
        nh = int(scale*h)
        nw = int(nh*new_ar)
    else:
        nw = int(scale*w)
        nh = int(nw/new_ar)
    image = image.resize((nw,nh), Image.BICUBIC)

    # 进行色域变换
    hue = rand(-hue, hue)
    sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
    val = rand(1, val) if rand()<.5 else 1/rand(1, val)
    x = rgb_to_hsv(np.array(image)/255.)
    x[..., 0] += hue
    x[..., 0][x[..., 0]>1] -= 1
    x[..., 0][x[..., 0]<0] += 1
    x[..., 1] *= sat
    x[..., 2] *= val
    x[x>1] = 1
    x[x<0] = 0
    image = hsv_to_rgb(x)

    image = Image.fromarray((image*255).astype(np.uint8))
    # 将图片进行放置,分别对应四张分割图片的位置
    dx = place_x[index]
    dy = place_y[index]
    new_image = Image.new('RGB', (w,h), (128,128,128))
    new_image.paste(image, (dx, dy))
    image_data = np.array(new_image)/255

    # Image.fromarray((image_data*255).astype(np.uint8)).save(str(index)+"distort.jpg")
    
    index = index + 1
    box_data = []
    # 对box进行重新处理
    if len(box)>0:
        np.random.shuffle(box)
        box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
        box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
        box[:, 0:2][box[:, 0:2]<0] = 0
        box[:, 2][box[:, 2]>w] = w
        box[:, 3][box[:, 3]>h] = h
        box_w = box[:, 2] - box[:, 0]
        box_h = box[:, 3] - box[:, 1]
        box = box[np.logical_and(box_w>1, box_h>1)]
        box_data = np.zeros((len(box),5))
        box_data[:len(box)] = box
    
    image_datas.append(image_data)
    box_datas.append(box_data)

    img = Image.fromarray((image_data*255).astype(np.uint8))
    for j in range(len(box_data)):
        thickness = 3
        left, top, right, bottom  = box_data[j][0:4]
        draw = ImageDraw.Draw(img)
        for i in range(thickness):
            draw.rectangle([left + i, top + i, right - i, bottom - i],outline=(255,255,255))
    img.show()


# 将图片分割,放在一起
cutx = np.random.randint(int(w*min_offset_x), int(w*(1 - min_offset_x)))
cuty = np.random.randint(int(h*min_offset_y), int(h*(1 - min_offset_y)))

new_image = np.zeros([h,w,3])
new_image[:cuty, :cutx, :] = image_datas[0][:cuty, :cutx, :]
new_image[cuty:, :cutx, :] = image_datas[1][cuty:, :cutx, :]
new_image[cuty:, cutx:, :] = image_datas[2][cuty:, cutx:, :]
new_image[:cuty, cutx:, :] = image_datas[3][:cuty, cutx:, :]

# 对框进行进一步的处理
new_boxes = merge_bboxes(box_datas, cutx, cuty)

return new_image, new_boxes
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183

b)、Label Smoothing平滑

标签平滑的思想很简单,具体公式如下:

new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes

   
   
   
   
  • 1

当label_smoothing的值为0.01得时候,公式变成如下所示:

new_onehot_labels = y * (1 - 0.01) + 0.01 / num_classes

   
   
   
   
  • 1

其实Label Smoothing平滑就是将标签进行一个平滑,原始的标签是0、1,在平滑后变成0.005(如果是二分类)、0.995,也就是说对分类准确做了一点惩罚,让模型不可以分类的太准确,太准确容易过拟合。

实现代码如下:

#---------------------------------------------------#
#   平滑标签
#---------------------------------------------------#
def _smooth_labels(y_true, label_smoothing):
    num_classes = K.shape(y_true)[-1],
    label_smoothing = K.constant(label_smoothing, dtype=K.floatx())
    return y_true * (1.0 - label_smoothing) + label_smoothing / num_classes

   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

c)、CIOU

IoU是比值的概念,对目标物体的scale是不敏感的。然而常用的BBox的回归损失优化和IoU优化不是完全等价的,寻常的IoU无法直接优化没有重叠的部分。

于是有人提出直接使用IOU作为回归优化loss,CIOU是其中非常优秀的一种想法。

CIOU将目标与anchor之间的距离,重叠率、尺度以及惩罚项都考虑进去,使得目标框回归变得更加稳定,不会像IoU和GIoU一样出现训练过程中发散等问题。而惩罚因子把预测框长宽比拟合目标框的长宽比考虑进去。

在这里插入图片描述
CIOU公式如下
C I O U = I O U − ρ 2 ( b , b g t ) c 2 − α v C I O U = I O U − ρ 2 ( b , b g t ) c 2 − α v C I O U = I O U − ρ 2 ( b , b g t ) c 2 − α v CIOU=IOU−ρ2(b,bgt)c2−αvCIOU=IOU−ρ2(b,bgt)c2−αv CIOU = IOU - \frac{\rho^2(b,b^{gt})}{c^2} - \alpha v CIOU=IOUρ2(b,bgt)c2αvCIOU=IOUρ2(b,bgt)c2αvCIOU=IOUc2ρ2(b,bgt)αvLOSSCIOU=1IOU+c2ρ2(b,bgt)+αv

def box_ciou(b1, b2):
    """
    输入为:
    ----------
    b1: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
    b2: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
返回为:
-------
ciou: tensor, shape=(batch, feat_w, feat_h, anchor_num, 1)
"""
# 求出预测框左上角右下角
b1_xy = b1[..., :2]
b1_wh = b1[..., 2:4]
b1_wh_half = b1_wh/2.
b1_mins = b1_xy - b1_wh_half
b1_maxes = b1_xy + b1_wh_half
# 求出真实框左上角右下角
b2_xy = b2[..., :2]
b2_wh = b2[..., 2:4]
b2_wh_half = b2_wh/2.
b2_mins = b2_xy - b2_wh_half
b2_maxes = b2_xy + b2_wh_half

# 求真实框和预测框所有的iou
intersect_mins = K.maximum(b1_mins, b2_mins)
intersect_maxes = K.minimum(b1_maxes, b2_maxes)
intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
union_area = b1_area + b2_area - intersect_area
iou = intersect_area / (union_area + K.epsilon())

# 计算中心的差距
center_distance = K.sum(K.square(b1_xy - b2_xy), axis=-1)
# 找到包裹两个框的最小框的左上角和右下角

你可能感兴趣的:(目标检测)