我的视频学习记录
视频原址:https://www.bilibili.com/video/av15997678?p=25
源代码:https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/404_autoencoder.py
import torch
import torchvision
import torch.utils.data as Data
import matplotlib.pyplot as plt
import torch.nn as nn
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
torch.manual_seed(1) # reproducible
# hyper parameters
EPOCH = 10
BATCH_SIZE = 64
LR = 0.005
DOWNLOAD_MNIST = False
N_TEST_IMG = 5
train_data = torchvision.datasets.MNIST(
root='./mnist',
train=True, # training data 就是true
transform=torchvision.transforms.ToTensor(),
download=DOWNLOAD_MNIST
)
train_loader = Data.DataLoader(
dataset=train_data,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=0
)
# print(train_data.data.size())
# print(train_data.targets.size())
# plt.imshow(train_data.data[0].numpy(), cmap='gray')
# plt.title('%i' % train_data.targets[0])
# plt.show()
class AutoEncoder(nn.Module):
def __init__(self):
super(AutoEncoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(28 * 28, 128),
nn.Tanh(),
nn.Linear(128, 64),
nn.Tanh(),
nn.Linear(64, 12),
nn.Tanh(),
nn.Linear(12, 3),
)
self.decoder = nn.Sequential(
nn.Linear(3, 12),
nn.Tanh(),
nn.Linear(12, 64),
nn.Tanh(),
nn.Linear(64, 128),
nn.Tanh(),
nn.Linear(128, 28 * 28),
nn.Sigmoid(), # 将输出值范围压缩到0~1
)
def forward(self, x):
encoder = self.encoder(x)
decoder = self.decoder(encoder)
return encoder, decoder
autoencoder = AutoEncoder()
optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.MSELoss()
f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
plt.ion()
view_data = train_data.data[:N_TEST_IMG].view(-1, 28 * 28).type(torch.FloatTensor)/255
for i in range(N_TEST_IMG):
a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray')
a[0][i].set_xticks(())
a[0][i].set_yticks(())
for epoch in range(EPOCH):
for step, (x, y) in enumerate(train_loader):
b_x = x.view(-1, 28 * 28) # batch x, shape(batch, 28 * 28)
b_y = x.view(-1, 28 * 28) # batch y, shape(batch, 28 * 28)
encoder, decoder = autoencoder(b_x)
loss = loss_func(decoder, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 100 == 0:
print('Epoch: ', epoch, '|train_loss:%.4f' % loss.item())
_, decoded_data = autoencoder(view_data)
for i in range(N_TEST_IMG):
a[1][i].clear()
a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
a[1][i].set_xticks(())
a[1][i].set_yticks(())
plt.draw()
plt.pause(0.05)
plt.ioff()
plt.show()
# visualize in 3D plot
view_data = train_data.data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.
encoded_data, _ = autoencoder(view_data)
fig = plt.figure(2); ax = Axes3D(fig)
X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
values = train_data.targets[:200].numpy()
for x, y, z, s in zip(X, Y, Z, values):
c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)
ax.set_xlim(X.min(), X.max())
ax.set_ylim(Y.min(), Y.max())
ax.set_zlim(Z.min(), Z.max())
plt.show()