自动装箱的过程:每当需要一种类型的对象时,这种基本类型就自动地封装到与它相同类型的包装中。
自动拆箱的过程:每当需要一个值时,被装箱对象中的值就被自动地提取出来,没必要再去调用intValue()和doubleValue()方法。
自动装箱,只需将该值赋给一个类型包装器引用,java会自动创建一个对象。
自动拆箱,只需将该对象值赋给一个基本类型即可。
java——类的包装器
类型包装器有:Double,Float,Long,Integer,Short,Character和Boolean
把集合里的对象元素一个一个提取出来。枚举类型使代码更具可读性,理解清晰,易于维护。枚举类型是强类型的,从而保证了系统安全性。而以类的静态字段实现的类似替代模型,不具有枚举的简单性和类型安全性。
简单的用法:JavaEnum简单的用法一般用于代表一组常用常量,可用来代表一类相同类型的常量值。
复杂用法:Java为枚举类型提供了一些内置的方法,同时枚举常量还可以有自己的方法。可以很方便的遍历枚举对象。
通过使用 import static,就可以不用指定 Constants 类名而直接使用静态成员,包括静态方法。
import xxxx 和 import static xxxx的区别是前者一般导入的是类文件如import java.util.Scanner;后者一般是导入静态的方法,import static java.lang.System.out。
可变参数的简单语法格式为:
method([argumentList], dataType… argumentName);
是 Java语言对Bean类属性、事件的一种缺省处理方法。例如类A中有属性name,那我们可以通过getName,setName来得到其值或者设置新 的值。通过getName/setName来访问name属性,这就是默认的规则。Java中提供了一套API用来访问某个属性的getter /setter方法,通过这些API可以使你不需要了解这个规则(但你最好还是要搞清楚),这些API存放于包java.beans中。
一 般的做法是通过类Introspector来获取某个对象的BeanInfo信息,然后通过BeanInfo来获取属性的描述器 (PropertyDescriptor),通过这个属性描述器就可以获取某个属性对应的getter/setter方法,然后我们就可以通过反射机制来 调用这些方法。
C++ 通过模板技术可以指定集合的元素类型,而Java在1.5之前一直没有相对应的功能。一个集合可以放任何类型的对象,相应地从集合里面拿对象的时候我们也 不得不对他们进行强制得类型转换。猛虎引入了泛型,它允许指定集合里元素的类型,这样你可以得到强类型在编译时刻进行类型检查的好处。
For-Each循环得加入简化了集合的遍历。假设我们要遍历一个集合对其中的元素进行一些处理。
在JDK6中 ,AWT新增加了两个类:Desktop和SystemTray。
前者可以用来打开系统默认浏览器浏览指定的URL,打开系统默认邮件客户端给指定的邮箱发邮件,用默认应用程序打开或编辑文件(比如,用记事本打开以txt为后缀名的文件),用系统默认的打印机打印文档;后者可以用来在系统托盘区创建一个托盘程序.
JAXB是Java Architecture for XML Binding的缩写,可以将一个Java对象转变成为XML格式,反之亦然。
我 们把对象与关系数据库之间的映射称为ORM, 其实也可以把对象与XML之间的映射称为OXM(Object XML Mapping). 原来JAXB是Java EE的一部分,在JDK6中,SUN将其放到了Java SE中,这也是SUN的一贯做法。JDK6中自带的这个JAXB版本是2.0, 比起1.0(JSR 31)来,JAXB2(JSR 222)用JDK5的新特性Annotation来标识要作绑定的类和属性等,这就极大简化了开发的工作量。
实 际上,在Java EE 5.0中,EJB和Web Services也通过Annotation来简化开发工作。另外,JAXB2在底层是用StAX(JSR 173)来处理XML文档。除了JAXB之外,我们还可以通过XMLBeans和Castor等来实现同样的功能。
StAX(JSR 173)是JDK6.0中除了DOM和SAX之外的又一种处理XML文档的API。
StAX 的来历 :在JAXP1.3(JSR 206)有两种处理XML文档的方法:DOM(Document Object Model)和SAX(Simple API for XML).
由 于JDK6.0中的JAXB2(JSR 222)和JAX-WS 2.0(JSR 224)都会用到StAX所以Sun决定把StAX加入到JAXP家族当中来,并将JAXP的版本升级到1.4(JAXP1.4是JAXP1.3的维护版 本). JDK6里面JAXP的版本就是1.4. 。
StAX是The Streaming API for XML的缩写,一种利用拉模式解析(pull-parsing)XML文档的API.StAX通过提供一种基于事件迭代器(Iterator)的API让 程序员去控制xml文档解析过程,程序遍历这个事件迭代器去处理每一个解析事件,解析事件可以看做是程序拉出来的,也就是程序促使解析器产生一个解析事件 然后处理该事件,之后又促使解析器产生下一个解析事件,如此循环直到碰到文档结束符;
SAX也是基于事件处理xml文档,但却 是用推模式解析,解析器解析完整个xml文档后,才产生解析事件,然后推给程序去处理这些事件;DOM 采用的方式是将整个xml文档映射到一颗内存树,这样就可以很容易地得到父节点和子结点以及兄弟节点的数据,但如果文档很大,将会严重影响性能。
现在我 们可以用JDK6 的Compiler API(JSR 199)去动态编译Java源文件,Compiler API结合反射功能就可以实现动态的产生Java代码并编译执行这些代码,有点动态语言的特征。
这 个特性对于某些需要用到动态编译的应用程序相当有用, 比如JSP Web Server,当我们手动修改JSP后,是不希望需要重启Web Server才可以看到效果的,这时候我们就可以用Compiler API来实现动态编译JSP文件,当然,现在的JSP Web Server也是支持JSP热部署的,现在的JSP Web Server通过在运行期间通过Runtime.exec或ProcessBuilder来调用javac来编译代码,这种方式需要我们产生另一个进程去 做编译工作,不够优雅而且容易使代码依赖与特定的操作系统;Compiler API通过一套易用的标准的API提供了更加丰富的方式去做动态编译,而且是跨平台的。
JDK6 提供了一个简单的Http Server API,据此我们可以构建自己的嵌入式Http Server,它支持Http和Https协议,提供了HTTP1.1的部分实现,没有被实现的那部分可以通过扩展已有的Http Server API来实现,程序员必须自己实现HttpHandler接口,HttpServer会调用HttpHandler实现类的回调方法来处理客户端请求,在 这里,我们把一个Http请求和它的响应称为一个交换,包装成HttpExchange类,HttpServer负责将HttpExchange传给 HttpHandler实现类的回调方法.
实 际上JSR 269不仅仅用来处理Annotation,我觉得更强大的功能是它建立了Java 语言本身的一个模型,它把method, package, constructor, type, variable, enum, annotation等Java语言元素映射为Types和Elements(两者有什么区别?), 从而将Java语言的语义映射成为对象, 我们可以在javax.lang.model包下面可以看到这些类. 所以我们可以利用JSR 269提供的API来构建一个功能丰富的元编程(metaprogramming)环境.
JSR 269用Annotation Processor在编译期间而不是运行期间处理Annotation, Annotation Processor相当于编译器的一个插件,所以称为插入式注解处理.如果Annotation Processor处理Annotation时(执行process方法)产生了新的Java代码,编译器会再调用一次Annotation Processor,如果第二次处理还有新代码产生,就会接着调用Annotation Processor,直到没有新代码产生为止.每执行一次process()方法被称为一个"round",这样整个Annotation processing过程可以看作是一个round的序列.
JSR 269主要被设计成为针对Tools或者容器的API. 举个例子,我们想建立一套基于Annotation的单元测试框架(如TestNG),在测试类里面用Annotation来标识测试期间需要执行的测试方法。
JDK6 中提供了java.io.Console 类专用来访问基于字符的控制台设备. 你的程序如果要与Windows下的cmd或者Linux下的Terminal交互,就可以用Console类代劳. 但我们不总是能得到可用的Console, 一个JVM是否有可用的Console依赖于底层平台和JVM如何被调用. 如果JVM是在交互式命令行(比如Windows的cmd)中启动的,并且输入输出没有重定向到另外的地方,那么就可以得到一个可用的Console实 例.
Common annotations原本是Java EE 5.0(JSR 244)规范的一部分,现在SUN把它的一部分放到了Java SE 6.0中.
随 着Annotation元数据功能(JSR 175)加入到Java SE 5.0里面,很多Java 技术(比如EJB,Web Services)都会用Annotation部分代替XML文件来配置运行参数(或者说是支持声明式编程,如EJB的声明式事务), 如果这些技术为通用目的都单独定义了自己的Annotations,显然有点重复建设, 所以,为其他相关的Java技术定义一套公共的Annotation是有价值的,可以避免重复建设的同时,也保证Java SE和Java EE 各种技术的一致性.
下面列举出Common Annotations 1.0里面的10个Annotations Common Annotations
Annotation Retention Target Description
Generated Source ANNOTATION_TYPE, CONSTRUCTOR, FIELD, LOCAL_VARIABLE, METHOD, PACKAGE, PARAMETER, TYPE 用于标注生成的源代码
Resource Runtime TYPE, METHOD, FIELD 用于标注所依赖的资源,容器据此注入外部资源依赖,有基于字段的注入和基于setter方法的注入两种方式
Resources Runtime TYPE 同时标注多个外部依赖,容器会把所有这些外部依赖注入
PostConstruct Runtime METHOD 标注当容器注入所有依赖之后运行的方法,用来进行依赖注入后的初始化工作,只有一个方法可以标注为PostConstruct
PreDestroy Runtime METHOD 当对象实例将要被从容器当中删掉之前,要执行的回调方法要标注为PreDestroy RunAs Runtime TYPE 用于标注用什么安全角色来执行被标注类的方法,这个安全角色必须和Container 的Security角色一致的。RolesAllowed Runtime TYPE, METHOD 用于标注允许执行被标注类或方法的安全角色,这个安全角色必须和Container 的Security角色一致的
PermitAll Runtime TYPE, METHOD 允许所有角色执行被标注的类或方法
DenyAll Runtime TYPE, METHOD 不允许任何角色执行被标注的类或方法,表明该类或方法不能在Java EE容器里面运行
DeclareRoles Runtime TYPE 用来定义可以被应用程序检验的安全角色,通常用isUserInRole来检验安全角色
注意:
(1)(.RolesAllowed,PermitAll,DenyAll不能同时应用到一个类或方法上
(2).标注在方法上的RolesAllowed,PermitAll,DenyAll会覆盖标注在类上的RolesAllowed,PermitAll,DenyAll
(3).RunAs,RolesAllowed,PermitAll,DenyAll和DeclareRoles还没有加到Java SE 6.0上来
(4). 处理以上Annotations的工作是由Java EE容器来做, Java SE 6.0只是包含了上面表格的前五种Annotations的定义类,并没有包含处理这些Annotations的引擎,这个工作可以由Pluggable Annotation Processing API(JSR 269)来做
改动的地方最大的就是java GUI界面的显示了,JDK6.0(也就是JDK1.6)支持最新的windows vista系统的Windows Aero视窗效果,而JDK1.5不支持!!!
你要在vista环境下编程的话最好装jdk6.0,否则它总是换到windows basic视窗效果.
String s = "test";
switch (s) {
case "test" :
System.out.println("test");
break ;
case "test1" :
System.out.println("test1");
break ;
default :
System.out.println("break");
break ;
}
public class JDK7GenericTest {
public static void main(String[] args) {
// Pre-JDK 7
List<String> lst1 = new ArrayList<String>();
// JDK 7 supports limited type inference for generic instance creation
List<String> lst2 = new ArrayList<>();
}
}
以下是jdk7 api中的接口,(不过注释太长,删掉了close()方法的一部分注释)
/**
* A resource that must be closed when it is no longer needed.
*
* @author Josh Bloch
* @since 1.7
*/
public interface AutoCloseable {
/**
* Closes this resource, relinquishing any underlying resources.
* This method is invoked automatically on objects managed by the
* {@code try}-with-resources statement.
*
*/
void close() throws Exception;
}
只要实现该接口,在该类对象销毁时自动调用close方法,你可以在close方法关闭你想关闭的资源,例子如下:
class TryClose implements AutoCloseable {
@Override
public void close() throw Exception {
System.out.println(" Custom close method … close resources ");
}
}
//请看jdk自带类BufferedReader如何实现close方法(当然还有很多类似类型的类)
public void close() throws IOException {
synchronized (lock) {
if (in == null)
return;
in.close();
in = null;
cb = null;
}
}
File System.getJavaIoTempDir() // IO临时文件夹
File System.getJavaHomeDir() // JRE的安装目录
File System.getUserHomeDir() // 当前用户目录
File System.getUserDir() // 启动java进程时所在的目录
.......
Boolean Booleans.negate(Boolean booleanObj)
True => False , False => True, Null => Null
boolean Booleans.and(boolean[] array)
boolean Booleans.or(boolean[] array)
boolean Booleans.xor(boolean[] array)
boolean Booleans.and(Boolean[] array)
boolean Booleans.or(Boolean[] array)
boolean Booleans.xor(Boolean[] array)
boolean Character.equalsIgnoreCase(char ch1, char ch2)
int Math.safeToInt(long value)
int Math.safeNegate(int value)
long Math.safeSubtract(long value1, int value2)
long Math.safeSubtract(long value1, long value2)
int Math.safeMultiply(int value1, int value2)
long Math.safeMultiply(long value1, int value2)
long Math.safeMultiply(long value1, long value2)
long Math.safeNegate(long value)
int Math.safeAdd(int value1, int value2)
long Math.safeAdd(long value1, int value2)
long Math.safeAdd(long value1, long value2)
int Math.safeSubtract(int value1, int value2)
例如:int one_million = 1_000_000;
例如:int binary = 0b1001_1001;
jdk7之前:
try {
......
} catch(ClassNotFoundException ex) {
ex.printStackTrace();
} catch(SQLException ex) {
ex.printStackTrace();
}
jdk7例子如下
try {
......
} catch(ClassNotFoundException|SQLException ex) {
ex.printStackTrace();
}
请看例子:
jdk7之前
import java.io.*;
// Copy from one file to another file character by character.
// Pre-JDK 7 requires you to close the resources using a finally block.
public class FileCopyPreJDK7 {
public static void main(String[] args) {
BufferedReader in = null;
BufferedWriter out = null;
try {
in = new BufferedReader(new FileReader("in.txt"));
out = new BufferedWriter(new FileWriter("out.txt"));
int charRead;
while ((charRead = in.read()) != -1) {
System.out.printf("%c ", (char)charRead);
out.write(charRead);
}
} catch (IOException ex) {
ex.printStackTrace();
} finally { // always close the streams
try {
if (in != null) in.close();
if (out != null) out.close();
} catch (IOException ex) {
ex.printStackTrace();
}
}
try {
in.read(); // Trigger IOException: Stream closed
} catch (IOException ex) {
ex.printStackTrace();
}
}
}
jdk7之后
import java.io.*;
// Copy from one file to another file character by character.
// JDK 7 has a try-with-resources statement, which ensures that
// each resource opened in try() is closed at the end of the statement.
public class FileCopyJDK7 {
public static void main(String[] args) {
try (BufferedReader in = new BufferedReader(new FileReader("in.txt"));
BufferedWriter out = new BufferedWriter(new FileWriter("out.txt"))) {
int charRead;
while ((charRead = in.read()) != -1) {
System.out.printf("%c ", (char)charRead);
out.write(charRead);
}
} catch (IOException ex) {
ex.printStackTrace();
}
}
}
Java 8允许我们给接口添加一个非抽象的方法实现,只需要使用 default关键字即可,这个特征又叫做扩展方法,示例如下:
代码如下:
interface Formula {
double calculate(int a);
default double sqrt(int a) {
return Math.sqrt(a);
}
}
Formula接口在拥有calculate方法之外同时还定义了sqrt方法,实现了Formula接口的子类只需要实现一个calculate方法,默认方法sqrt将在子类上可以直接使用。
代码如下:
Formula formula = new Formula() {
@Override
public double calculate(int a) {
return sqrt(a * 100);
}
};
formula.calculate(100); // 100.0
formula.sqrt(16); // 4.0
文中的formula被实现为一个匿名类的实例,该代码非常容易理解,6行代码实现了计算 sqrt(a * 100)。在下一节中,我们将会看到实现单方法接口的更简单的做法。
译者注: 在Java中只有单继承,如果要让一个类赋予新的特性,通常是使用接口来实现,在C++中支持多继承,允许一个子类同时具有多个父类的接口与功能,在其他 语言中,让一个类同时具有其他的可复用代码的方法叫做mixin。新的Java 8 的这个特新在编译器实现的角度上来说更加接近Scala的trait。 在C#中也有名为扩展方法的概念,允许给已存在的类型扩展方法,和Java 8的这个在语义上有差别。
首先看看在老版本的Java中是如何排列字符串的:
List<String> names = Arrays.asList("peter", "anna", "mike", "xenia");
Collections.sort(names, new Comparator<String>() {
@Override
public int compare(String a, String b) {
return b.compareTo(a);
}
});
只需要给静态方法 Collections.sort 传入一个List对象以及一个比较器来按指定顺序排列。通常做法都是创建一个匿名的比较器对象然后将其传递给sort方法。
在Java 8 中你就没必要使用这种传统的匿名对象的方式了,Java 8提供了更简洁的语法,lambda表达式:
Collections.sort(names, (String a, String b) -> {
return b.compareTo(a);
});
看到了吧,代码变得更段且更具有可读性,但是实际上还可以写得更短:
Collections.sort(names, (String a, String b) -> b.compareTo(a));
对于函数体只有一行代码的,你可以去掉大括号{}以及return关键字,但是你还可以写得更短点:
Collections.sort(names, (a, b) -> b.compareTo(a));
ava编译器可以自动推导出参数类型,所以你可以不用再写一次类型。接下来我们看看lambda表达式还能作出什么更方便的东西来:
Lambda 表达式是如何在java的类型系统中表示的呢?每一个lambda表达式都对应一个类型,通常是接口类型。而“函数式接口”是指仅仅只包含一个抽象方法的 接口,每一个该类型的lambda表达式都会被匹配到这个抽象方法。因为 默认方法 不算抽象方法,所以你也可以给你的函数式接口添加默认方法。
我们可以将lambda表达式当作任意只包含一个抽象方法的接口类型,确保你的接口一定达到这个要求,你只需要给你的接口添加 @FunctionalInterface 注解,编译器如果发现你标注了这个注解的接口有多于一个抽象方法的时候会报错的。
示例如下:
@FunctionalInterface
interface Converter<F, T> {
T convert(F from);
}
Converter<String, Integer> converter = (from) -> Integer.valueOf(from);
Integer converted = converter.convert("123");
System.out.println(converted); // 123
需要注意如果@FunctionalInterface如果没有指定,上面的代码也是对的。
译者注 将lambda表达式映射到一个单方法的接口上,这种做法在Java 8之前就有别的语言实现,比如Rhino JavaScript解释器,如果一个函数参数接收一个单方法的接口而你传递的是一个function,Rhino 解释器会自动做一个单接口的实例到function的适配器,典型的应用场景有 org.w3c.dom.events.EventTarget 的addEventListener 第二个参数 EventListener。
前一节中的代码还可以通过静态方法引用来表示:
Converter<String, Integer> converter = Integer::valueOf;
Integer converted = converter.convert("123");
System.out.println(converted); // 123
Java 8 允许你使用 :: 关键字来传递方法或者构造函数引用,上面的代码展示了如何引用一个静态方法,我们也可以引用一个对象的方法:
converter = something::startsWith;
String converted = converter.convert("Java");
System.out.println(converted); // "J"
接下来看看构造函数是如何使用::关键字来引用的,首先我们定义一个包含多个构造函数的简单类:
class Person {
String firstName;
String lastName;
Person() {}
Person(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;
}
}
接下来我们指定一个用来创建Person对象的对象工厂接口:
interface PersonFactory<P extends Person> {
P create(String firstName, String lastName);
}
这里我们使用构造函数引用来将他们关联起来,而不是实现一个完整的工厂:
PersonFactory<Person> personFactory = Person::new;
Person person = personFactory.create("Peter", "Parker");
我们只需要使用 Person::new 来获取Person类构造函数的引用,Java编译器会自动根据PersonFactory.create方法的签名来选择合适的构造函数。
在lambda表达式中访问外层作用域和老版本的匿名对象中的方式很相似。你可以直接访问标记了final的外层局部变量,或者实例的字段以及静态变量。
我们可以直接在lambda表达式中访问外层的局部变量:
final int num = 1;
Converter<Integer, String> stringConverter = (from) -> String.valueOf(from + num);
stringConverter.convert(2); // 3
但是和匿名对象不同的是,这里的变量num可以不用声明为final,该代码同样正确:
int num = 1;
Converter<Integer, String> stringConverter = (from) -> String.valueOf(from + num);
stringConverter.convert(2); // 3
不过这里的num必须不可被后面的代码修改(即隐性的具有final的语义),例如下面的就无法编译:
int num = 1;
Converter<Integer, String> stringConverter = (from) -> String.valueOf(from + num);
num = 3;
在lambda表达式中试图修改num同样是不允许的。
和本地变量不同的是,lambda内部对于实例的字段以及静态变量是即可读又可写。该行为和匿名对象是一致的:
class Lambda4 {
static int outerStaticNum;
int outerNum;
void testScopes() {
Converter<Integer, String> stringConverter1 = (from) -> {
outerNum = 23;
return String.valueOf(from);
};
Converter<Integer, String> stringConverter2 = (from) -> {
outerStaticNum = 72;
return String.valueOf(from);
};
}
}
还记得第一节中的formula例子么,接口Formula定义了一个默认方法sqrt可以直接被formula的实例包括匿名对象访问到,但是在lambda表达式中这个是不行的。
Lambda表达式中是无法访问到默认方法的,以下代码将无法编译:
Formula formula = (a) -> sqrt( a * 100);
Built-in Functional Interfaces
JDK 1.8 API包含了很多内建的函数式接口,在老Java中常用到的比如Comparator或者Runnable接口,这些接口都增加了@FunctionalInterface注解以便能用在lambda上。
Java 8 API同样还提供了很多全新的函数式接口来让工作更加方便,有一些接口是来自Google Guava库里的,即便你对这些很熟悉了,还是有必要看看这些是如何扩展到lambda上使用的。
Predicate 接口只有一个参数,返回boolean类型。该接口包含多种默认方法来将Predicate组合成其他复杂的逻辑(比如:与,或,非):
Predicate<String> predicate = (s) -> s.length() > 0;
predicate.test("foo"); // true
predicate.negate().test("foo"); // false
Predicate<Boolean> nonNull = Objects::nonNull;
Predicate<Boolean> isNull = Objects::isNull;
Predicate<String> isEmpty = String::isEmpty;
Predicate<String> isNotEmpty = isEmpty.negate();
Function 接口有一个参数并且返回一个结果,并附带了一些可以和其他函数组合的默认方法(compose, andThen):
Function<String, Integer> toInteger = Integer::valueOf;
Function<String, String> backToString = toInteger.andThen(String::valueOf);
backToString.apply("123"); // "123"
Supplier 接口返回一个任意范型的值,和Function接口不同的是该接口没有任何参数
Supplier<Person> personSupplier = Person::new;
personSupplier.get(); // new Person
Consumer 接口表示执行在单个参数上的操作。
Consumer<Person> greeter = (p) -> System.out.println("Hello, " + p.firstName);
greeter.accept(new Person("Luke", "Skywalker"));
Comparator 是老Java中的经典接口, Java 8在此之上添加了多种默认方法:
Comparator<Person> comparator = (p1, p2) -> p1.firstName.compareTo(p2.firstName);
Person p1 = new Person("John", "Doe");
Person p2 = new Person("Alice", "Wonderland");
comparator.compare(p1, p2); // > 0
comparator.reversed().compare(p1, p2); // < 0
Optional 不是函数是接口,这是个用来防止NullPointerException异常的辅助类型,这是下一届中将要用到的重要概念,现在先简单的看看这个接口能干什么:
Optional 被定义为一个简单的容器,其值可能是null或者不是null。在Java 8之前一般某个函数应该返回非空对象但是偶尔却可能返回了null,而在Java 8中,不推荐你返回null而是返回Optional。
Optional<String> optional = Optional.of("bam");
optional.isPresent(); // true
optional.get(); // "bam"
optional.orElse("fallback"); // "bam"
optional.ifPresent((s) -> System.out.println(s.charAt(0))); // "b"
java.util.Stream 表示能应用在一组元素上一次执行的操作序列。Stream 操作分为中间操作或者最终操作两种,最终操作返回一特定类型的计算结果,而中间操作返回Stream本身,这样你就可以将多个操作依次串起来。 Stream 的创建需要指定一个数据源,比如 java.util.Collection的子类,List或者Set, Map不支持。Stream的操作可以串行执行或者并行执行。
首先看看Stream是怎么用,首先创建实例代码的用到的数据List:
List<String> stringCollection = new ArrayList<>();
stringCollection.add("ddd2");
stringCollection.add("aaa2");
stringCollection.add("bbb1");
stringCollection.add("aaa1");
stringCollection.add("bbb3");
stringCollection.add("ccc");
stringCollection.add("bbb2");
stringCollection.add("ddd1");
Java 8扩展了集合类,可以通过 Collection.stream() 或者 Collection.parallelStream() 来创建一个Stream。下面几节将详细解释常用的Stream操作:
Filter 过滤
过滤通过一个predicate接口来过滤并只保留符合条件的元素,该操作属于中间操作,所以我们可以在过滤后的结果来应用其他Stream操作 (比如forEach)。forEach需要一个函数来对过滤后的元素依次执行。forEach是一个最终操作,所以我们不能在forEach之后来执行 其他Stream操作。
tringCollection
.stream()
.filter((s) -> s.startsWith("a"))
.forEach(System.out::println);
// "aaa2", "aaa1"
Sort 排序
排序是一个中间操作,返回的是排序好后的Stream。如果你不指定一个自定义的Comparator则会使用默认排序。
stringCollection
.stream()
.sorted()
.filter((s) -> s.startsWith("a"))
.forEach(System.out::println);
// "aaa1", "aaa2"
需要注意的是,排序只创建了一个排列好后的Stream,而不会影响原有的数据源,排序之后原数据stringCollection是不会被修改的:
System.out.println(stringCollection);
// ddd2, aaa2, bbb1, aaa1, bbb3, ccc, bbb2, ddd1
Map 映射
中间操作map会将元素根据指定的Function接口来依次将元素转成另外的对象,下面的示例展示了将字符串转换为大写字符串。你也可以通过map来讲对象转换成其他类型,map返回的Stream类型是根据你map传递进去的函数的返回值决定的。
stringCollection
.stream()
.map(String::toUpperCase)
.sorted((a, b) -> b.compareTo(a))
.forEach(System.out::println);
// "DDD2", "DDD1", "CCC", "BBB3", "BBB2", "AAA2", "AAA1"
Match 匹配
Stream提供了多种匹配操作,允许检测指定的Predicate是否匹配整个Stream。所有的匹配操作都是最终操作,并返回一个boolean类型的值。
boolean anyStartsWithA =
stringCollection
.stream()
.anyMatch((s) -> s.startsWith("a"));
System.out.println(anyStartsWithA); // true
boolean allStartsWithA =
stringCollection
.stream()
.allMatch((s) -> s.startsWith("a"));
System.out.println(allStartsWithA); // false
boolean noneStartsWithZ =
stringCollection
.stream()
.noneMatch((s) -> s.startsWith("z"));
System.out.println(noneStartsWithZ); // true
Count 计数
计数是一个最终操作,返回Stream中元素的个数,返回值类型是long。
long startsWithB =
stringCollection
.stream()
.filter((s) -> s.startsWith("b"))
.count();
System.out.println(startsWithB); // 3
Reduce 规约
这是一个最终操作,允许通过指定的函数来讲stream中的多个元素规约为一个元素,规越后的结果是通过Optional接口表示的:
Optional<String> reduced =
stringCollection
.stream()
.sorted()
.reduce((s1, s2) -> s1 + "#" + s2);
reduced.ifPresent(System.out::println);
// "aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2"
并行Streams
前面提到过Stream有串行和并行两种,串行Stream上的操作是在一个线程中依次完成,而并行Stream则是在多个线程上同时执行。
下面的例子展示了是如何通过并行Stream来提升性能:
首先我们创建一个没有重复元素的大表:
int max = 1000000;
List<String> values = new ArrayList<>(max);
for (int i = 0; i < max; i++) {
UUID uuid = UUID.randomUUID();
values.add(uuid.toString());
}
然后我们计算一下排序这个Stream要耗时多久,
串行排序:
long t0 = System.nanoTime();
long count = values.stream().sorted().count();
System.out.println(count);
long t1 = System.nanoTime();
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("sequential sort took: %d ms", millis));
// 串行耗时: 899 ms
并行排序:
long t0 = System.nanoTime();
long count = values.parallelStream().sorted().count();
System.out.println(count);
long t1 = System.nanoTime();
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("parallel sort took: %d ms", millis));
// 并行排序耗时: 472 ms
上面两个代码几乎是一样的,但是并行版的快了50%之多,唯一需要做的改动就是将stream()改为parallelStream()。
Map
前面提到过,Map类型不支持stream,不过Map提供了一些新的有用的方法来处理一些日常任务。
Map<Integer, String> map = new HashMap<>();
for (int i = 0; i < 10; i++) {
map.putIfAbsent(i, "val" + i);
}
map.forEach((id, val) -> System.out.println(val));
以上代码很容易理解, putIfAbsent 不需要我们做额外的存在性检查,而forEach则接收一个Consumer接口来对map里的每一个键值对进行操作。
下面的例子展示了map上的其他有用的函数:
map.computeIfPresent(3, (num, val) -> val + num);
map.get(3); // val33
map.computeIfPresent(9, (num, val) -> null);
map.containsKey(9); // false
map.computeIfAbsent(23, num -> "val" + num);
map.containsKey(23); // true
map.computeIfAbsent(3, num -> "bam");
map.get(3); // val33
接下来展示如何在Map里删除一个键值全都匹配的项:
map.remove(3, "val3");
map.get(3); // val33
map.remove(3, "val33");
map.get(3); // null
另外一个有用的方法:
map.getOrDefault(42, "not found"); // not found
对Map的元素做合并也变得很容易了:
map.merge(9, "val9", (value, newValue) -> value.concat(newValue));
map.get(9); // val9
map.merge(9, "concat", (value, newValue) -> value.concat(newValue));
map.get(9); // val9concat
Merge做的事情是如果键名不存在则插入,否则则对原键对应的值做合并操作并重新插入到map中。
Java 8 在包java.time下包含了一组全新的时间日期API。新的日期API和开源的Joda-Time库差不多,但又不完全一样,下面的例子展示了这组新API里最重要的一些部分:
Clock类提供了访问当前日期和时间的方法,Clock是时区敏感的,可以用来取代 System.currentTimeMillis() 来获取当前的微秒数。某一个特定的时间点也可以使用Instant类来表示,Instant类也可以用来创建老的java.util.Date对象。
Clock clock = Clock.systemDefaultZone();
long millis = clock.millis();
Instant instant = clock.instant();
Date legacyDate = Date.from(instant); // legacy java.util.Date
在新API中时区使用ZoneId来表示。时区可以很方便的使用静态方法of来获取到。 时区定义了到UTS时间的时间差,在Instant时间点对象到本地日期对象之间转换的时候是极其重要的。
System.out.println(ZoneId.getAvailableZoneIds());
// prints all available timezone ids
ZoneId zone1 = ZoneId.of("Europe/Berlin");
ZoneId zone2 = ZoneId.of("Brazil/East");
System.out.println(zone1.getRules());
System.out.println(zone2.getRules());
// ZoneRules[currentStandardOffset=+01:00]
// ZoneRules[currentStandardOffset=-03:00]
LocalTime 定义了一个没有时区信息的时间,例如 晚上10点,或者 17:30:15。下面的例子使用前面代码创建的时区创建了两个本地时间。之后比较时间并以小时和分钟为单位计算两个时间的时间差:
LocalTime now1 = LocalTime.now(zone1);
LocalTime now2 = LocalTime.now(zone2);
System.out.println(now1.isBefore(now2)); // false
long hoursBetween = ChronoUnit.HOURS.between(now1, now2);
long minutesBetween = ChronoUnit.MINUTES.between(now1, now2);
System.out.println(hoursBetween); // -3
System.out.println(minutesBetween); // -239
localTime 提供了多种工厂方法来简化对象的创建,包括解析时间字符串。
LocalTime late = LocalTime.of(23, 59, 59);
System.out.println(late); // 23:59:59
DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedTime(FormatStyle.SHORT)
.withLocale(Locale.GERMAN);
LocalTime leetTime = LocalTime.parse("13:37", germanFormatter);
System.out.println(leetTime); // 13:37
LocalDate 表示了一个确切的日期,比如 2014-03-11。该对象值是不可变的,用起来和LocalTime基本一致。下面的例子展示了如何给Date对象加减天/月/年。另外要注意的是这些对象是不可变的,操作返回的总是一个新实例。
LocalDate today = LocalDate.now();
LocalDate tomorrow = today.plus(1, ChronoUnit.DAYS);
LocalDate yesterday = tomorrow.minusDays(2);
LocalDate independenceDay = LocalDate.of(2014, Month.JULY, 4);
DayOfWeek dayOfWeek = independenceDay.getDayOfWeek();
System.out.println(dayOfWeek); // FRIDAY
从字符串解析一个LocalDate类型和解析LocalTime一样简单:
DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedDate(FormatStyle.MEDIUM)
.withLocale(Locale.GERMAN);
LocalDate xmas = LocalDate.parse("24.12.2014", germanFormatter);
System.out.println(xmas); // 2014-12-24
LocalDateTime 同时表示了时间和日期,相当于前两节内容合并到一个对象上了。LocalDateTime和LocalTime还有LocalDate一样,都是不可变的。LocalDateTime提供了一些能访问具体字段的方法。
LocalDateTime sylvester = LocalDateTime.of(2014, Month.DECEMBER, 31, 23, 59, 59);
DayOfWeek dayOfWeek = sylvester.getDayOfWeek();
System.out.println(dayOfWeek); // WEDNESDAY
Month month = sylvester.getMonth();
System.out.println(month); // DECEMBER
long minuteOfDay = sylvester.getLong(ChronoField.MINUTE_OF_DAY);
System.out.println(minuteOfDay); // 1439
只要附加上时区信息,就可以将其转换为一个时间点Instant对象,Instant时间点对象可以很容易的转换为老式的java.util.Date。
Instant instant = sylvester
.atZone(ZoneId.systemDefault())
.toInstant();
Date legacyDate = Date.from(instant);
System.out.println(legacyDate); // Wed Dec 31 23:59:59 CET 2014
格式化LocalDateTime和格式化时间和日期一样的,除了使用预定义好的格式外,我们也可以自己定义格式:
DateTimeFormatter formatter =
DateTimeFormatter
.ofPattern("MMM dd, yyyy - HH:mm");
LocalDateTime parsed = LocalDateTime.parse("Nov 03, 2014 - 07:13", formatter);
String string = formatter.format(parsed);
System.out.println(string); // Nov 03, 2014 - 07:13
和java.text.NumberFormat不一样的是新版的DateTimeFormatter是不可变的,所以它是线程安全的。
关于时间日期格式的详细信息:http://download.java.net/jdk8/docs/api/java/time/format/DateTimeFormatter.html
在Java 8中支持多重注解了,先看个例子来理解一下是什么意思。
首先定义一个包装类Hints注解用来放置一组具体的Hint注解:
@interface Hints {
Hint[] value();
}
@Repeatable(Hints.class)
@interface Hint {
String value();
}
Java 8允许我们把同一个类型的注解使用多次,只需要给该注解标注一下@Repeatable即可。
例 1: 使用包装类当容器来存多个注解(老方法)
@Hints({@Hint("hint1"), @Hint("hint2")})
class Person {}
例 2:使用多重注解(新方法)
@Hint("hint1")
@Hint("hint2")
class Person {}
第二个例子里java编译器会隐性的帮你定义好@Hints注解,了解这一点有助于你用反射来获取这些信息:
Hint hint = Person.class.getAnnotation(Hint.class);
System.out.println(hint); // null
Hints hints1 = Person.class.getAnnotation(Hints.class);
System.out.println(hints1.value().length); // 2
Hint[] hints2 = Person.class.getAnnotationsByType(Hint.class);
System.out.println(hints2.length); // 2
即便我们没有在Person类上定义@Hints注解,我们还是可以通过 getAnnotation(Hints.class) 来获取 @Hints注解,更加方便的方法是使用 getAnnotationsByType 可以直接获取到所有的@Hint注解。
另外Java 8的注解还增加到两种新的target上了:
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
@interface MyAnnotation {}
Java 9 的定义功能是一套全新的模块系统。当代码库越来越大,创建复杂,盘根错节的“意大利面条式代码”的几率呈指数级的增长。这时候就得面对两个基础的问题: 很难真正地对代码进行封装, 而系统并没有对不同部分(也就是 JAR 文件)之间的依赖关系有个明确的概念。每一个公共类都可以被类路径之下任何其它的公共类所访问到, 这样就会导致无意中使用了并不想被公开访问的 API。此外,类路径本身也存在问题: 你怎么知晓所有需要的 JAR 都已经有了, 或者是不是会有重复的项呢? 模块系统把这俩个问题都给解决了。
模块化的 JAR 文件都包含一个额外的模块描述器。在这个模块描述器中, 对其它模块的依赖是通过 “requires” 来表示的。另外, “exports” 语句控制着哪些包是可以被其它模块访问到的。所有不被导出的包默认都封装在模块的里面。如下是一个模块描述器的示例,存在于 “module-info.java” 文件中:
module blog {
exports com.pluralsight.blog;
requires cms;
}
当启动一个模块化应用时, JVM 会验证是否所有的模块都能使用,这基于 requires
语句——比脆弱的类路径迈进了一大步。模块允许你更好地强制结构化封装你的应用并明确依赖。你可以在这个课程中学习更多关于 Java 9 中模块工作的信息 。
当你使用具有显式依赖关系的模块和模块化的 JDK 时,新的可能性出现了。你的应用程序模块现在将声明其对其他应用程序模块的依赖以及对其所使用的 JDK 模块的依赖。为什么不使用这些信息创建一个最小的运行时环境,其中只包含运行应用程序所需的那些模块呢? 这可以通过 Java 9 中的新的 jlink 工具实现。你可以创建针对应用程序进行优化的最小运行时映像而不需要使用完全加载 JDK 安装版本。
许多语言已经具有交互式编程环境,Java 现在加入了这个俱乐部。您可以从控制台启动 jshell ,并直接启动输入和执行 Java 代码。 jshell 的即时反馈使它成为探索 API 和尝试语言特性的好工具。
测试一个 Java 正则表达式是一个很好的说明 jshell 如何使您的生活更轻松的例子。 交互式 shell 还可以提供良好的教学环境以及提高生产力,您可以在此了解更多信息。在教人们如何编写 Java 的过程中,不再需要解释 “public static void main(String [] args)” 这句废话。
有时一些小事情可以带来很大的不同。你是否就像我一样在一直使用 Google 来查找正确的 Javadoc 页面呢? 这不再需要了。Javadoc 现在支持在 API 文档中的进行搜索。另外,Javadoc 的输出现在符合兼容 HTML5 标准。此外,你会注意到,每个 Javadoc 页面都包含有关 JDK 模块类或接口来源的信息。
通常,您希望在代码中创建一个集合(例如,List 或 Set ),并直接用一些元素填充它。 实例化集合,几个 “add” 调用,使得代码重复。 Java 9,添加了几种集合工厂方法:
Set<Integer> ints = Set.of(1, 2, 3);
List<String> strings = List.of("first", "second");
除了更短和更好阅读之外,这些方法也可以避免您选择特定的集合实现。 事实上,从工厂方法返回已放入数个元素的集合实现是高度优化的。这是可能的,因为它们是不可变的:在创建后,继续添加元素到这些集合会导致 “UnsupportedOperationException” 。
长期以来,Stream API 都是 Java 标准库最好的改进之一。通过这套 API 可以在集合上建立用于转换的申明管道。在 Java 9 中它会变得更好。Stream 接口中添加了 4 个新的方法:dropWhile, takeWhile, ofNullable。还有个 iterate 方法的新重载方法,可以让你提供一个 Predicate (判断条件)来指定什么时候结束迭代:
IntStream.iterate(1, i -> i < 100, i -> i + 1).forEach(System.out::println);
第二个参数是一个 Lambda,它会在当前 IntStream 中的元素到达 100 的时候返回 true。因此这个简单的示例是向控制台打印 1 到 99。
除了对 Stream 本身的扩展,Optional 和 Stream 之间的结合也得到了改进。现在可以通过 Optional 的新方法stream将一个 Optional 对象转换为一个(可能是空的) Stream 对象:
Stream<Integer> s = Optional.of(1).stream();
在组合复杂的 Stream 管道时,将 Optional 转换为 Stream 非常有用。
Java 8 为我们带来了接口的默认方法。 接口现在也可以包含行为,而不仅仅是方法签名。 但是,如果在接口上有几个默认方法,代码几乎相同,会发生什么情况? 通常,您将重构这些方法,调用一个可复用的私有方法。 但默认方法不能是私有的。 将复用代码创建为一个默认方法不是一个解决方案,因为该辅助方法会成为公共API的一部分。 使用 Java 9,您可以向接口添加私有辅助方法来解决此问题:
public interface MyInterface {
void normalInterfaceMethod();
default void interfaceMethodWithDefault() { init(); }
default void anotherDefaultMethod() { init(); }
// This method is not part of the public API exposed by MyInterface
private void init() { System.out.println("Initializing"); }
}
如果您使用默认方法开发 API ,那么私有接口方法可能有助于构建其实现。
Java 9 中有新的方式来处理 HTTP 调用。这个迟到的特性用于代替老旧的 HttpURLConnection
API,并提供对 WebSocket 和 HTTP/2 的支持。注意:新的 HttpClient API 在 Java 9 中以所谓的孵化器模块交付。也就是说,这套 API 不能保证 100% 完成。不过你可以在 Java 9 中开始使用这套 API:
HttpClient client = HttpClient.newHttpClient();
HttpRequest req =
HttpRequest.newBuilder(URI.create("http://www.google.com"))
.header("User-Agent","Java")
.GET()
.build();
HttpResponse<String> resp = client.send(req, HttpResponse.BodyHandler.asString());
HttpResponse<String> resp = client.send(req, HttpResponse.BodyHandler.asString());
除了这个简单的请求/响应模型之外,HttpClient 还提供了新的 API 来处理 HTTP/2 的特性,比如流和服务端推送。
我们最后要来着重介绍的这个特性对于库的维护者而言是个特别好的消息。当一个新版本的 Java 出现的时候,你的库用户要花费数年时间才会切换到这个新的版本。这就意味着库得去向后兼容你想要支持的最老的 Java 版本 (许多情况下就是 Java 6 或者 7)。这实际上意味着未来的很长一段时间,你都不能在库中运用 Java 9 所提供的新特性。幸运的是,多版本兼容 JAR 功能能让你创建仅在特定版本的 Java 环境中运行库程序时选择使用的 class 版本:
multirelease.jar
├── META-INF
│ └── versions
│ └── 9
│ └── multirelease
│ └── Helper.class
├── multirelease
├── Helper.class
└── Main.class
在上述场景中, multirelease.jar 可以在 Java 9 中使用, 不过 Helper 这个类使用的不是顶层的 multirelease.Helper 这个 class, 而是处在“META-INF/versions/9”下面的这个。这是特别为 Java 9 准备的 class 版本,可以运用 Java 9 所提供的特性和库。同时,在早期的 Java 诸版本中使用这个 JAR 也是能运行的,因为较老版本的 Java 只会看到顶层的这个 Helper 类。
很多人抱怨Java是一种强类型,需要引入大量的样板代码。甚至在这些情况下,给定好变量名,通常很清楚发生了什么,明显类型声明往往被认为是不必要的。许多流行的编程语言都已经支持某种形式的局部变量类型推断:如C++ (auto), C# (var), Scala (var/val), Go (declaration with :=)等。
JDK10 可以使用var作为局部变量类型推断标识符,此符号仅适用于局部变量,增强for循环的索引,以及传统for循环的本地变量;它不能使用于方法形式参数,构造函数形式参数,方法返回类型,字段,catch形式参数或任何其他类型的变量声明。
标识符var不是关键字;相反,它是一个保留的类型名称。这意味着var用作变量,方法名或则包名称的代码不会受到影响;但var不能作为类或则接口的名字(但这样命名是比较罕见的,因为他违反了通常的命名约定,类和接口首字母应该大写)。
参考一下示例:
var str = "ABC"; //根据推断为 字符串类型
var l = 10L;//根据10L 推断long 类型
var flag = true;//根据 true推断 boolean 类型
var flag1 = 1;//这里会推断boolean类型。0表示false 非0表示true
var list = new ArrayList<String>(); // 推断 ArrayList
var stream = list.stream(); // 推断 Stream
反编译class文件:
String str = "ABC";
long l = 10L;
boolean flag = true;
int flag1 = true;
ArrayList<String> list = new ArrayList();
Stream<String> stream = list.stream();
从上面示例可以看出,当我们是用复杂的方法时,不需要特意去指定他的具体类型返回,可以使用var推断出正确的数据类型,这在编码中,可以大幅减少我们对方法返回值的探究。
为了简化和简化开发,将JDK多存储库合并到一个存储库中。多年来,JDK的完整代码已经被分解成多个存储库。在JDK9 中有八个仓库:root、corba、hotspot、jaxp、jaxws、jdk、langtools和nashorn。在JDK10中被合并为一个存储库。
虽然这种多存储库模型具有一些有点,但它也有许多缺点,并且在支持各种可取的源代码管理操作方面做得很差。特别是,不可能在相互依赖的变更存储库之间执行原子提交。例如,如果一个bug修复或RFE的代码现在同时跨越了jdk和hotspot 存储库,那么对于两个存储库来说,在托管这两个不同的存储库中,对两个存储库的更改是不可能实现的。跨多个存储库的变更是常见。
这不是让开发者用来控制垃圾回收的接口;而是一个在 JVM 源代码中的允许另外的垃圾回收器快速方便的集成的接口。
垃圾回收接口为HotSpot的GC代码提供更好的模块化;在不影响当前代码的基础情况下,将GC添加到HotSpot变的更简单;更容易从JDK构建中排除GC。实际添加或删除GC不是目标,这项工作将使HotSpot中GC算法的构建时间隔离取得进展,但它不是完全构建时间隔离的目标。
JDK10 通过并行Full GC,改善G1的延迟。G1垃圾收集器在JDK 9中是默认的。以前的默认值并行收集器中有一个并行的Full GC。为了尽量减少对使用GC用户的影响,G1的Full GC也应该并行。
G1垃圾收集器的设计目的是避免Full收集,但是当集合不能足够快地回收内存时,就会出现完全GC。目前对G1的Full GC的实现使用了单线程标记-清除-压缩算法。JDK10 使用并行化标记-清除-压缩算法,并使用Young和Mixed收集器相同的线程数量。线程的数量可以由-XX:ParallelGCThreads选项来控制,但是这也会影响用Young和Mixed收集器的线程数量。
为了提高启动和内存占用,扩展现有的类数据共享(CDS)特性,允许将应用程序类放置在共享档案中。
(1)通过在不同的Java进程间共享公共类元数据来减少占用空间。
(2)提升启动时间。
(3)CDS允许将来自JDK的运行时映像文件($JAVA_HOME/lib/modules)的归档类和 应用程序类路径加载到内置平台和系统类加载器中。
(4)CDS允许将归档类加载到自定义类加载器中。
在不执行全局VM安全点的情况下对线程执行回调的方法。让它停止单个线程而不是全部线程。
JDK10 从JDK中移除了javah 工具。该工具已被JDK8 (JDK-7150368)中添加javac高级功能所取代。此功能提供了在编译java源代码时编写本机头文件的功能,从而无需使用单独的工具。
JDK10 改善 java.util.Locale 类和相关的 API 以实现额外 BCP 47 语言标签的 Unicode 扩展。尤其以下扩展支持:
cu:货币类型
fw:一周的第一天
rg:区域覆盖
tz:时区
为支持以上扩展,JDK10对以下API进行更改:
java.text.DateFormat::get*Instance:将根据扩展ca、rg或tz返回实例。
java.text.DateFormatSymbols::getInstance:将根据扩展rg返回实例。
java.text.DecimalFormatSymbols::getInstance:将根据扩展rg返回实例。
java.text.NumberFormat::get*Instance:将根据nu或rg返回实例。
java.time.format.DateTimeFormatter::localizedBy:将返回DateTimeFormatter 根据ca,rg或rz的实例。
java.time.format.DateTimeFormatterBuilder::getLocalizedDateTimePattern:将根据rg返回String。
java.time.format.DecimalStyle::of:将返回DecimalStyle根据nu或rg的实例。
java.time.temporal.WeekFields::of:将返回WeekFields根据fw或rg的实例。
java.util.Calendar::{getFirstDayOfWeek,getMinimalDaysInWeek}:将根据fw或rg返回值。
java.util.Currency::getInstance:将返回Currency根据cu或rg返回实例。
java.util.Locale::getDisplayName:将返回一个包含这些U扩展名的显示名称的字符串。
java.util.spi.LocaleNameProvider:将为这些U扩展的键和类型提供新的SPI。
启用HotSpot VM以在用户指定的备用内存设备上分配Java对象堆。随着廉价的NV-DIMM内存的可用性,未来的系统可能配备了异构的内存架构。这种技术的一个例子是英特尔的3D XPoint。这样的体系结构,除了DRAM之外,还会有一种或多种类型的非DRAM内存,具有不同的特征。具有与DRAM具有相同语义的可选内存设备,包括原子操作的语义,因此可以在不改变现有应用程序代码的情况下使用DRAM代替DRAM。所有其他的内存结构,如代码堆、metaspace、线程堆栈等等,都将继续驻留在DRAM中。
参考以下使用案例:
在多JVM部署中,某些JVM(如守护进程,服务等)的优先级低于其他JVM。与DRAM相比,NV-DIMM可能具有更高的访问延迟。低优先级进程可以为堆使用NV-DIMM内存,允许高优先级进程使用更多DRAM。
诸如大数据和内存数据库等应用程序对内存的需求不断增加。这种应用可以将NV-DIMM用于堆,因为与DRAM相比,NV-DIMM可能具有更大的容量,成本更低。
启用基于Java的JIT编译器Graal,将其用作Linux / x64平台上的实验性JIT编译器。Graal是一个基于Java的JIT编译器,它是JDK 9中引入的Ahead-of-Time(AOT)编译器的基础。使它成为实验性JIT编译器是Project Metropolis的一项举措,它是下一步是研究JDK的基于Java的JIT的可行性。
使Graal可用作实验JIT编译器,从Linux / x64平台开始。Graal将使用JDK 9中引入的JVM编译器接口(JVMCI)。Graal已经在JDK中,因此将它作为实验JIT将主要用于测试和调试工作。要启用Graal作为JIT编译器,请在java命令行上使用以下选项:
-XX:+UnlockExperimentalVMOptions -XX:+UseJVMCICompiler
在JDK中提供一组默认的root 认证权威(CA)证书。在Oracle的Java SE根CA程序中开源root证书,以使OpenJDK构建对开发人员更有吸引力,并减少这些构建和Oracle JDK构建之间的差异。
cacerts密钥存储库是JDK的一部分,它的目的是包含一组root证书,这些root证书可以用来在各种安全协议中使用的证书链中建立信任。然而,JDK源代码中的cacerts密钥库目前是空的。因此,诸如TLS之类的关键安全组件在OpenJDK构建中不会默认工作。为了解决这个问题,用户必须配置和填充cacerts密钥库,并使用一组root证书来记录,例如, JDK 9 release notes。
在JEP 223 引入的版本字符串方案比以往有了显著的改进,但是,该方案并不适合未来,现在Java SE平台和JDK的新版本严格按照六个月的节奏发布。JEP 223方案的主要困难在于发行版的版本号对于其前身的重要性和兼容性进行了编码。然而,在基于时间发布模式中,这些品质并不是事先知道的。在发布的开发周期中,它们可能会发生变化,直到最终的功能被集成为止。因此发布的版本号也是未知的。
使用JEP 223的版本号语义,每个在JDK发布版上工作或者在其上构建或使用组件的人都必须先说明发布的发布日期,然后切换到说版本号,已知。维护库,框架和工具的开发人员必须准备好更改在每个JDK发布周期后期检查版本号的代码。这对所有参与者来说都很尴尬和混乱。
因此,这里提出的主要改变是重新编制版本号来编码,而不是编码的兼容性和重要性,而是按照发布周期的时间推移。这是更适合基于时间的发布模型,因为每个发布周期,因此每个发布的版本号,总是提前知道。
后续的版本格式为:[1-9][0-9]((.0).[1-9][0-9])
该格式可以是任意长度,但前四个被赋予特定含义,如: F E A T U R E . FEATURE. FEATURE.INTERIM. U P D A T E . UPDATE. UPDATE.PATCH
$FEATURE:功能发布计数器,不管发布内容如何,都会为每个功能发布增加。功能可能会添加到功能发布中; 如果提前通知提前至少发布一次功能发布,它们也可能会被删除。如果合理,可能会做出不兼容的更改。
$INTERIM:临时版本计数器,对于包含兼容错误修复和增强功能的非功能版本递增,但没有不兼容的更改,没有功能移除,也没有对标准API的更改。
$UPDATE:更新版本计数器增加了兼容更新版本,可解决新功能中的安全问题,回归和错误。
$PATCH:紧急修补程序释放计数器只有在需要生成紧急释放以解决关键问题时才会增加。
版本号永远不会有零元素结尾。如果一个元素及其后的所有元素在逻辑上具有零值,那么它们全部被省略。
在严格六个月的发布模式下,版本号如下所示:
$FEATURE 每六个月增加一次。如:2018年3月发布的是JDK 10,2018年9月发布的是JDK 11,等等。
$INTERIM 总是为零,因为六个月的模型不包括临时版本。在此为保留其灵活性,以便将来对版本模型的修订可能包括此类版本。
$UPDATE 在$FEATURE发布后的一个月递增,之后每三个月递增一次:如2018年4月发布JDK 10.0.1。7月发布的是JDK 10.0.2等等。
Java的改进提议被称为JEP(JDK Enhancement Proposal 特性增强提议),JDK11是Java改为6月一版之后的第一个LTS版本。
JDK9中便引入httpclient模块,但它在jdk.incubator.httpclient包下,在java11被标记为正式,改为java.net.http模块。
使用RFC 7748中描述的Curve25519和Curve448实现key agreement
实现 RFC 7539的ChaCha20 and ChaCha20-Poly1305加密算法
ava Haha.java直接输出javac Haha.java &&java Haha的结果。
Nashorn被废弃,GraalVM为推荐引擎。
String text = " \u2000a b ";
Assert.assertEquals("a b",text.strip());
Assert.assertEquals("\u2000a b",text.trim());
Assert.assertEquals("a b ",text.stripLeading());
Assert.assertEquals(" \u2000a b",text.stripTrailing());
trim()和strip()的区别
jshell> var aaa = fullSpace + "aaa" + fullSpace
aaa ==> " aaa "
jshell> aaa.strip()
$14 ==> "aaa"
jshell> aaa.trim()
$15 ==> " aaa "
字符串实例方法,使用专门的 Spliterator 来懒惰地提供源字符串中的行.
jshell> "test\nhoge\n".lines().map(String::toUpperCase).toArray()
$11 ==> Object[2] { "TEST", "HOGE" }
按照参数 int 提供的次数来重复字符串的运行次数
jshell> "test".repeat(3)
$7 ==> "testtesttest"
验证当前字符串是否为空,或者是否只包括空白字符(空白字符由 Character.isWhiteSpace(int) 验证)
jshell> var halfSpace = "\u0020"
halfSpace ==> " "
jshell> halfSpace.isBlank()
$11 ==> true
jshell> var fullSpace = "\u3000"
fullSpace ==> " "
jshell> fullSpace.isBlank()
$13 ==> true
of(String, String...)
此前我们需要使用 Paths.get()。现在,我们像其他类一样使用 of()。
writeString(Path, CharSequence)
我们可以使用该方法来保存一个 String 字符串。
jshell> Files.writeString(Path.of("test.txt"), "Hello!!!")
$3 ==> test.txt
readString(Path)
我们可以使用该方法来读取一个 String 字符串。
jshell> Files.readString(Path.of("test.txt"))
$4 ==> "Hello!!!"
nullReader()
使用该方法,我们可以得到一个不执行任何操作的 Reader。
nullWriter()
使用该方法,我们可以得到一个不执行任何操作的 Writer。
nullInputStream()
使用该方法,我们可以得到一个不执行任何操作的 InputStream。
nullOutputStream()
使用该方法,我们可以得到一个不执行任何操作的 OutputStream。
import java.io.IOException;
import static java.util.Calendar.*;
class Haha {
public static void main(String[] args) throws IOException, InterruptedException {
var day = 2;
switch (day) {
case MONDAY, FRIDAY, SUNDAY -> System.out.println(6);
case TUESDAY -> System.out.println(7);
case THURSDAY, SATURDAY -> System.out.println(8);
case WEDNESDAY -> System.out.println(9);
}
}
}
注意新语法使用->,如果有多条语句,需要用{}括起来。不要写break语句,因为新语法只会执行匹配的语句,没有穿透效应。
很多时候,我们还可能用switch语句给某个变量赋值。例如:
System.out.println(switch (day) {
case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY -> 7;
case THURSDAY, SATURDAY -> 8;
case WEDNESDAY -> 9;
default -> -1;
});
对于需要返回值的switch expression要么正常返回值要么抛出异常,以下这两种写法都是错误的:
int i = switch (day) {
case MONDAY -> {
System.out.println("Monday");
// ERROR! Block doesn't contain a break with value
}
default -> 1;
};
i = switch (day) {
case MONDAY, TUESDAY, WEDNESDAY:
break 0;
default:
System.out.println("Second half of the week");
// ERROR! Group doesn't contain a break with value
};
大多数时候,在switch表达式内部,我们会返回简单的值。
但是,如果需要复杂的语句,我们也可以写很多语句,放到{…}里,然后,用yield返回一个值作为switch语句的返回值:
public class Main {
public static void main(String[] args) {
String fruit = "orange";
int opt = switch (fruit) {
case "apple" -> 1;
case "pear", "mango" -> 2;
default -> {
int code = fruit.hashCode();
yield code; // switch语句返回值
}
};
System.out.println("opt = " + opt);
}
}
var cnf = NumberFormat.getCompactNumberInstance(Locale.CHINA, NumberFormat.Style.SHORT);
System.out.println(cnf.format(1_0000));
System.out.println(cnf.format(1_9200));
System.out.println(cnf.format(1_000_000));
System.out.println(cnf.format(1L << 30));
System.out.println(cnf.format(1L << 40));
System.out.println(cnf.format(1L << 50));
System.out.println(NumberFormat.getCompactNumberInstance(Locale.CHINA, NumberFormat.Style.SHORT).format(12345));
System.out.println(NumberFormat.getCompactNumberInstance(Locale.CHINA, NumberFormat.Style.LONG).format(12345));
transform
java @Test public void testStringTransform(){ System.out.println("hello".transform(new Function<String, Integer>() { @Override public Integer apply(String s) { return s.hashCode(); } })); }
indent
@Test
public void testStringIndent(){
System.out.println("hello".indent(3));
}
如果我们要表示多行字符串,使用+号连接会非常不方便:
String s = "first line \n"
+ "second line \n"
+ "end";
从Java 13开始,字符串可以用"""…"""表示多行字符串(Text Blocks)了。举个例子:
public class Main {
public static void main(String[] args) {
String s = """
SELECT * FROM
users
WHERE id > 100
ORDER BY name DESC
""";
System.out.println(s);
}
}
上述多行字符串实际上是5行,在最后一个DESC后面还有一个\n。如果我们不想在字符串末尾加一个\n,就需要这么写:
String s = """
SELECT * FROM
users
WHERE id > 100
ORDER BY name DESC""";
还需要注意到,多行字符串前面共同的空格会被去掉,即:
String s = """
...........SELECT * FROM
........... users
...........WHERE id > 100
...........ORDER BY name DESC
...........""";
用.标注的空格都会被去掉。
如果多行字符串的排版不规则,那么,去掉的空格就会变成这样:
String s = """
......... SELECT * FROM
......... users
.........WHERE id > 100
......... ORDER BY name DESC
......... """;
即总是以最短的行首空格为基准。
instanceof实际上判断一个变量所指向的实例是否是指定类型,或者这个类型的子类。如果一个引用变量为null,那么对任何instanceof的判断都为false。
利用instanceof,在向下转型前可以先判断:
Person p = new Student();
if (p instanceof Student) {
// 只有判断成功才会向下转型:
Student s = (Student) p; // 一定会成功
}
从Java 14开始,判断instanceof后,可以直接转型为指定变量,避免再次强制转型。例如,对于以下代码:
Object obj = "hello";
if (obj instanceof String) {
String s = (String) obj;
System.out.println(s.toUpperCase());
}
可以改写如下:
public class Main {
public static void main(String[] args) {
Object obj = "hello";
if (obj instanceof String s) {
// 可以直接使用变量s:
System.out.println(s.toUpperCase());
}
}
}
我们通常需要编写大量代码才能使类变得有用。如以下内容:
toString()方法
hashCode() and equals()方法
Getter 方法
一个共有的构造函数
对于这种简单的类,这些方法通常是无聊的、重复的,而且是可以很容易地机械地生成的那种东西(ide通常提供这种功能)。
当你阅读别人的代码时,可能会更加头大。例如,别人可能使用IDE生成的hashCode()和equals()来处理类的所有字段,但是如何才能在不检查实现的每一行的情况下确定他写的对呢?如果在重构过程中添加了字段而没有重新生成方法,会发生什么情况呢?
大神Brian Goetz提出了使用record定义一个纯数据载体的想法,于是,Java 14 中便包含了一个新特性:EP 359: Records ,作者正是 Brian Goetz
Records的目标是扩展Java语言语法,Records为声明类提供了一种紧凑的语法,用于创建一种类中是“字段,只是字段,除了字段什么都没有”的类。通过对类做这样的声明,编译器可以通过自动创建所有方法并让所有字段参与hashCode()等方法。这是JDK 14中的一个预览特性。
Records的用法比较简单,和定义Java类一样:
record Person (String firstName, String lastName) {}
如上,我们定义了一个Person记录,其中包含两个组件:firstName和lastName,以及一个空的类体。
我们定义Record类时,使用关键字record。把上述Point类改写为Record类,代码如下:
public class Main {
public static void main(String[] args) {
Point p = new Point(123, 456);
System.out.println(p.x());
System.out.println(p.y());
System.out.println(p);
}
}
public record Point(int x, int y) {}
仔细观察Point的定义:
public record Point(int x, int y) {}
把上述定义改写为class,相当于以下代码:
public final class Point extends Record {
private final int x;
private final int y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
public int x() {
return this.x;
}
public int y() {
return this.y;
}
public String toString() {
return String.format("Point[x=%s, y=%s]", x, y);
}
public boolean equals(Object o) {
...
}
public int hashCode() {
...
}
}
除了用final修饰class以及每个字段外,编译器还自动为我们创建了构造方法,和字段名同名的方法,以及覆写toString()、equals()和hashCode()方法。
换句话说,使用record关键字,可以一行写出一个不变类。
和enum类似,我们自己不能直接从Record派生,只能通过record关键字由编译器实现继承。
构造方法
编译器默认按照record声明的变量顺序自动创建一个构造方法,并在方法内给字段赋值。那么问题来了,如果我们要检查参数,应该怎么办?
假设Point类的x、y不允许负数,我们就得给Point的构造方法加上检查逻辑:
public record Point(int x, int y) {
public Point {
if (x < 0 || y < 0) {
throw new IllegalArgumentException();
}
}
}
注意到方法public Point {…}被称为Compact Constructor,它的目的是让我们编写检查逻辑,编译器最终生成的构造方法如下:
public final class Point extends Record {
public Point(int x, int y) {
// 这是我们编写的Compact Constructor:
if (x < 0 || y < 0) {
throw new IllegalArgumentException();
}
// 这是编译器继续生成的赋值代码:
this.x = x;
this.y = y;
}
...
}
作为record的Point仍然可以添加静态方法。一种常用的静态方法是of()方法,用来创建Point:
public record Point(int x, int y) {
public static Point of() {
return new Point(0, 0);
}
public static Point of(int x, int y) {
return new Point(x, y);
}
}
这样我们可以写出更简洁的代码:
var z = Point.of();
var p = Point.of(123, 456);
record 解决了使用类作为数据包装器的一个常见问题。纯数据类从几行代码显著地简化为一行代码。
但是,record目前是一种预览语言特性,这意味着,尽管它已经完全实现,但在JDK中还没有标准化。
从Java 14开始,如果产生了NullPointerException,JVM可以给出详细的信息告诉我们null对象到底是谁。我们来看例子:
public class Main {
public static void main(String[] args) {
Person p = new Person();
System.out.println(p.address.city.toLowerCase());
}
}
class Person {
String[] name = new String[2];
Address address = new Address();
}
class Address {
String city;
String street;
String zipcode;
}
可以在NullPointerException的详细信息中看到类似… because “.address.city” is null,意思是city字段为null,这样我们就能快速定位问题所在。
这种增强的NullPointerException详细信息是Java 14新增的功能,但默认是关闭的,我们可以给JVM添加一个-XX:+ShowCodeDetailsInExceptionMessages参数启用它