Elasticsearch第三篇:查询详解

从第一篇开始,我用的ES版本就是7.8.0的,与低版本略有不同,不同点可以参考官方介绍,最大的不同就是抛弃 type 这一概念,为了方便测试,首先建立一个学生成绩的索引库(在建立的同时,规定字段类型,并指定IK中文分词)

PUT http://localhost:9200/db_student
{
"mappings": { "properties": { "class": { "type": "integer", "store": true, "index":true }, "chinese": { "type": "integer", "store": true, "index":true }, "english": { "type": "integer", "store": true, "index":true }, "math": { "type": "integer", "store": true, "index":true }, "name": { "type": "text", "store": true, "index":true }, "school": { "type": "text", "store": true, "index":true, "analyzer":"ik_max_word" } } } }

为了方便测试,需要先插入测试数据,如下,一共插入8条记录

PUT http://localhost:9200/db_student/_doc/1
{
"chinese":80,
"class":10,
"english":90,
"math":100,
"name":"Vincent",
"school":"华南理工大学"
}

PUT http://localhost:9200/db_student/_doc/2
{
"chinese":80,
"class":11,
"english":85,
"math":90,
"name":"Kitty",
"school":"华南理工大学"
}

PUT http://localhost:9200/db_student/_doc/3
{
"chinese":90,
"class":12,
"english":65,
"math":70,
"name":"Thomas",
"school":"华南师范大学"
}

PUT http://localhost:9200/db_student/_doc/4
{
"chinese":70,
"class":12,
"english":85,
"math":85,
"name":"Lucy",
"school":"华南师范大学"
}

PUT http://localhost:9200/db_student/_doc/5
{
"chinese":60,
"class":12,
"english":95,
"math":95,
"name":"Lily",
"school":"华南农业大学"
}

PUT http://localhost:9200/db_student/_doc/6
{
"chinese":87,
"class":12,
"english":55,
"math":98,
"name":"Coco",
"school":"华南农业大学"
}

PUT http://localhost:9200/db_student/_doc/7
{
"chinese":88,
"class":12,
"english":65,
"math":85,
"name":"Allen",
"school":"中山大学"
}

PUT http://localhost:9200/db_student/_doc/8
{"chinese":77,
"class":12,
"english":45,
"math":89,
"name":"Zack",
"school":"中山大学"
}

 打开 Kibana 可以看到已经插入的数据,如下

Elasticsearch第三篇:查询详解_第1张图片

 

数据已经插入,现在可以来实现基本的查询了。

1、查询所有索引库、所有文档

POST  http://localhost:9200/_search
{
   "query": {
       "match_all": {}
   }   
}

2、查询索引库 db_student 所有文档

POST  http://localhost:9200/db_student/_search
或者是 http://localhost:9200/db_student/_doc/_search
{ "query": { "match_all": {} } }

3、根据文档编号 id=1 来获取文档

GET  http://localhost:9200/db_student/_doc/1

4、查询 class=10 的学生

      注意:term 在这里相当于 = 的逻辑,但是如果是字符串,还可以是包含的逻辑。

POST  http://localhost:9200/db_student/_search
{
   "query": {
       "bool":{
             "must":[
                   {"term":{"class":10}}
             ]
       }
   }   
}

5、And 逻辑查询,如查询 class=10 并且 name=vincent 的文档

POST  http://localhost:9200/db_student/_search
{
  "query": {
     "bool":{
         "must":[
             {"term":{"name":"vincent"}},
             {"term":{"class":10}}
         ]
     }
  }
}

6、模糊查询,例如,查询 school 包含 “华南” 的文档

POST  http://localhost:9200/db_student/_search
{
   "query": {
       "bool":{
             "must":[
                   {"match":{"school":"华南"}}
             ]
       }
   }   
}

也可以是term

POST  http://localhost:9200/db_student/_search
{
   "query": {
       "bool":{
             "must":[
                   {"term":{"school":"华南"}}
             ]
       }
   }   
}

7、范围查询,查询 english 大于等于90,小于等于100的文档

 注意:from、to 都是闭包的,包含等于

POST   http://localhost:9200/db_student/_search
{
   "query": {
       "bool":{
             "must":[
                   {"range":{"english":{"from":90,"to":99}}}
             ]
       }
   }   
}

还可以查大于、小于的逻辑,例如查询  english 大于90的文档

注意:gt 表示大于, lt 表示小于 ,这两者都不包含等于

POST http://localhost:9200/db_student/_search
{
   "query": {
       "bool":{
             "must":[
                   {"range":{"english":{"gt":90}}}
             ]
       }
   }   
}

8、高亮显示,例如 name 高亮

POST  http://localhost:9200/db_student/_search
{
   "query": {
      "term":{"name":"vincent"}
   },
   "highlight":{
          "pre_tags" : "",
          "post_tags" : "",
          "fields" : {
             "name" : {}
        }
   }
}

查询结果是:

{
    "took": 1,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 1,
            "relation": "eq"
        },
        "max_score": 1.7917595,
        "hits": [
            {
                "_index": "db_student",
                "_type": "_doc",
                "_id": "1",
                "_score": 1.7917595,
                "_source": {
                    "chinese": 80,
                    "class": 10,
                    "english": 90,
                    "math": 100,
                    "name": "Vincent",
                    "school": "华南理工大学"
                },
                "highlight": {
                    "name": [
                        "Vincent"
                    ]
                }
            }
        ]
    }
}

9、分页和排序,先按照 english 倒序,再按 math 升序,每页3条记录,取第一页

POST  http://localhost:9200/db_student/_search
{
    "query": {
        "match_all":{}
    },
    "from": 0, 
    "size": 3, 
    "sort":{ 
        "english" : {"order" : "desc"},
        "math": {"order" : "asc"}
        
    }
}

查询结果是

{
    "took": 0,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 8,
            "relation": "eq"
        },
        "max_score": null,
        "hits": [
            {
                "_index": "db_student",
                "_type": "_doc",
                "_id": "5",
                "_score": null,
                "_source": {
                    "chinese": 60,
                    "class": 12,
                    "english": 95,
                    "math": 95,
                    "name": "Lily",
                    "school": "华南农业大学"
                },
                "sort": [
                    95,
                    95
                ]
            },
            {
                "_index": "db_student",
                "_type": "_doc",
                "_id": "1",
                "_score": null,
                "_source": {
                    "chinese": 80,
                    "class": 10,
                    "english": 90,
                    "math": 100,
                    "name": "Vincent",
                    "school": "华南理工大学"
                },
                "sort": [
                    90,
                    100
                ]
            },
            {
                "_index": "db_student",
                "_type": "_doc",
                "_id": "4",
                "_score": null,
                "_source": {
                    "chinese": 70,
                    "class": 12,
                    "english": 85,
                    "math": 85,
                    "name": "Lucy",
                    "school": "华南师范大学"
                },
                "sort": [
                    85,
                    85
                ]
            }
        ]
    }
}

 聚合查询、统计查询等等, 稍后补上

你可能感兴趣的:(Elasticsearch第三篇:查询详解)