ET:边沿触发
LT(默认):水平触发(持续触发)
struct epoll_event event;
event.events = EPOLLIN | EPOLLET;
epoll_ctl(epfd, EPOLL_CTL_ADD, cfd, &event)
int flg = fcntl(cfd, F_GETFL);
flg |= O_NONBLOCK; // 添加 非阻塞属性
fcntl(cfd, F_SETFL, flg);
使用 fcntl() 函数
int fcntl(int fd, int cmd, ... /* arg */ );
fd:文件描述符
cmd:命令
F_GETFL: 获取当前文件属性。
F_SETFL: 设置当前文件属性。
...: 变参, 根据命令 传递不同参数。
// 修改非阻塞
int flg = fcntl(fd,F_GETFL);
flg |= O_NONBLOCK; // 添加 非阻塞属性
fcntl(fd,F_SETFL,flg);
socket()、Bind()、Listen() —> epoll_create() 创建监听红黑数 —> 返回 epfd —> epoll_ctl() —> EPOLL_CTL_ADD —> 向树上添加一个监听 fd —> while (1) —> epoll_wait 监听 —> 对应监听fd有事件产生 —> 返回满足监听条件的数组。 —> 判断 返回的元素 —> lfd 满足 —> Accept() —> cfd 满足 —> read() —> 小 – 大 —> write() 写回去。
-----核心思想:不仅要监听cfd的读事件,还要监听cfd的写事件
socket()、Bind()、Listen() —> epoll_create() 创建监听红黑数 —> 返回 epfd —> epoll_ctl() —> EPOLL_CTL_ADD —> 向树上添加一个监听 fd —> while (1) —> epoll_wait 监听 —> 对应监听fd有事件产生 —> 返回满足监听条件的数组。 —> 判断 返回的元素 —> lfd 满足 —> Accept() —> cfd 满足 —> read() —> 小 – 大 —> epoll_ctl() 将cfd 从树上摘下 —> 设置EPOLLOUT 和 写的回调函数 —> 使用epoll_ctl() 向树上添加 cfd 的 写事件 EPOLL_CTL_ADD —> 调用 epoll_wait() —> 返回说明cfd可写 —> write()写回去 —> 将cfd从树上摘下 —> 设置EPOLLIN 并 设置读回调函数 —> 使用epoll_ctl() 向树上添加 cfd 的 写事件 EPOLL_CTL_ADD —> 调用 epoll_wait() 。。。
struct myevent_s {
int fd; //要监听的文件描述符
int events; //对应的监听事件
void *arg; //泛型参数
void (*call_back)(int fd, int events, void *arg); //回调函数
int status; //是否在监听:1->在红黑树上(监听), 0->不在(不监听)
char buf[BUFLEN];
int len;
long last_active; //记录每次加入红黑树 g_efd 的时间值
};
设置端口号,可从命令行获取,默认8080
epoll_create() 创建红黑树,将返回的红黑树根存在全局变量 g_efd 中
initlistensocket() 函数初始化 lfd ,相当于Socket()、Bind()、Listen()
while(1){
}
使用 recv() 函数读数据
eventdel() 从树上摘除
如果 recv() 的返回值
大于0 :处理字符串,设置该 fd 的回调函数为 senddata() ,重新设置结构体 eventset() ,然后 eventadd() 挂到红黑树上,设置 EPOLLOUT 监听 写事件。
等于0 :关闭文件描述符 close(fd)
小于0 :关闭文件描述符 close(fd)
/*
*epoll基于非阻塞I/O事件驱动
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MAX_EVENTS 1024 //监听上限数
#define BUFLEN 4096
#define SERV_PORT 8080
void recvdata(int fd, int events, void *arg);
void senddata(int fd, int events, void *arg);
/* 描述就绪文件描述符相关信息 */
struct myevent_s {
int fd; //要监听的文件描述符
int events; //对应的监听事件
void *arg; //泛型参数
void (*call_back)(int fd, int events, void *arg); //回调函数
int status; //是否在监听:1->在红黑树上(监听), 0->不在(不监听)
char buf[BUFLEN];
int len;
long last_active; //记录每次加入红黑树 g_efd 的时间值
};
int g_efd; //全局变量, 保存epoll_create返回的文件描述符
struct myevent_s g_events[MAX_EVENTS+1]; //自定义结构体类型数组. +1-->listen fd
/*将结构体 myevent_s 成员变量 初始化*/
void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg)
{
ev->fd = fd;
ev->call_back = call_back;
ev->events = 0;
ev->arg = arg;
ev->status = 0;
//memset(ev->buf, 0, sizeof(ev->buf));
//ev->len = 0;
ev->last_active = time(NULL); //调用eventset函数的时间
return;
}
/* 向 epoll监听的红黑树 添加一个 文件描述符 */
//eventadd(efd, EPOLLIN, &g_events[MAX_EVENTS]);
void eventadd(int efd, int events, struct myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
int op;
epv.data.ptr = ev;
epv.events = ev->events = events; //EPOLLIN 或 EPOLLOUT
if (ev->status == 0) { //不在红黑树 g_efd 上
op = EPOLL_CTL_ADD; //将其加入红黑树 g_efd, 并将status置1
ev->status = 1;
}
if (epoll_ctl(efd, op, ev->fd, &epv) < 0) //实际添加/修改
printf("event add failed [fd=%d], events[%d]\n", ev->fd, events);
else
printf("event add OK [fd=%d], op=%d, events[%0X]\n", ev->fd, op, events);
return ;
}
/* 从epoll 监听的 红黑树中删除一个 文件描述符*/
void eventdel(int efd, struct myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
if (ev->status != 1) //不在红黑树上
return ;
//epv.data.ptr = ev;
epv.data.ptr = NULL;
ev->status = 0; //修改状态
epoll_ctl(efd, EPOLL_CTL_DEL, ev->fd, &epv); //从红黑树 efd 上将 ev->fd 摘除
return ;
}
/* 当有文件描述符就绪, epoll返回, 调用该函数 与客户端建立链接 */
void acceptconn(int lfd, int events, void *arg)
{
struct sockaddr_in cin;
socklen_t len = sizeof(cin);
int cfd, i;
if ((cfd = accept(lfd, (struct sockaddr *)&cin, &len)) == -1) {
if (errno != EAGAIN && errno != EINTR) {
/* 暂时不做出错处理 */
}
printf("%s: accept, %s\n", __func__, strerror(errno));
return ;
}
do {
for (i = 0; i < MAX_EVENTS; i++) //从全局数组g_events中找一个空闲元素
if (g_events[i].status == 0) //类似于select中找值为-1的元素
break; //跳出 for
if (i == MAX_EVENTS) {
printf("%s: max connect limit[%d]\n", __func__, MAX_EVENTS);
break; //跳出do while(0) 不执行后续代码
}
int flag = 0;
if ((flag = fcntl(cfd, F_SETFL, O_NONBLOCK)) < 0) { //将cfd也设置为非阻塞
printf("%s: fcntl nonblocking failed, %s\n", __func__, strerror(errno));
break;
}
/* 给cfd设置一个 myevent_s 结构体, 回调函数 设置为 recvdata */
eventset(&g_events[i], cfd, recvdata, &g_events[i]);
eventadd(g_efd, EPOLLIN, &g_events[i]); //将cfd添加到红黑树g_efd中,监听读事件
} while(0);
printf("new connect [%s:%d][time:%ld], pos[%d]\n",
inet_ntoa(cin.sin_addr), ntohs(cin.sin_port), g_events[i].last_active, i);
return ;
}
void recvdata(int fd, int events, void *arg)
{
struct myevent_s *ev = (struct myevent_s *)arg;
int len;
len = recv(fd, ev->buf, sizeof(ev->buf), 0); //读文件描述符, 数据存入myevent_s成员buf中
eventdel(g_efd, ev); //将该节点从红黑树上摘除
if (len > 0) {
ev->len = len;
ev->buf[len] = '\0'; //手动添加字符串结束标记
printf("C[%d]:%s\n", fd, ev->buf);
eventset(ev, fd, senddata, ev); //设置该 fd 对应的回调函数为 senddata
eventadd(g_efd, EPOLLOUT, ev); //将fd加入红黑树g_efd中,监听其写事件
} else if (len == 0) {
close(ev->fd);
/* ev-g_events 地址相减得到偏移元素位置 */
printf("[fd=%d] pos[%ld], closed\n", fd, ev-g_events);
} else {
close(ev->fd);
printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
}
return;
}
void senddata(int fd, int events, void *arg)
{
struct myevent_s *ev = (struct myevent_s *)arg;
int len;
len = send(fd, ev->buf, ev->len, 0); //直接将数据 回写给客户端。未作处理
eventdel(g_efd, ev); //从红黑树g_efd中移除
if (len > 0) {
printf("send[fd=%d], [%d]%s\n", fd, len, ev->buf);
eventset(ev, fd, recvdata, ev); //将该fd的 回调函数改为 recvdata
eventadd(g_efd, EPOLLIN, ev); //从新添加到红黑树上, 设为监听读事件
} else {
close(ev->fd); //关闭链接
printf("send[fd=%d] error %s\n", fd, strerror(errno));
}
return ;
}
/*创建 socket, 初始化lfd */
void initlistensocket(int efd, short port)
{
struct sockaddr_in sin;
int lfd = socket(AF_INET, SOCK_STREAM, 0);
fcntl(lfd, F_SETFL, O_NONBLOCK); //将socket设为非阻塞
memset(&sin, 0, sizeof(sin)); //bzero(&sin, sizeof(sin))
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(port);
bind(lfd, (struct sockaddr *)&sin, sizeof(sin));
listen(lfd, 20);
/* void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg); */
eventset(&g_events[MAX_EVENTS], lfd, acceptconn, &g_events[MAX_EVENTS]);
/* void eventadd(int efd, int events, struct myevent_s *ev) */
eventadd(efd, EPOLLIN, &g_events[MAX_EVENTS]);
return ;
}
int main(int argc, char *argv[])
{
unsigned short port = SERV_PORT;
if (argc == 2)
port = atoi(argv[1]); //使用用户指定端口.如未指定,用默认端口
g_efd = epoll_create(MAX_EVENTS+1); //创建红黑树,返回给全局 g_efd
if (g_efd <= 0)
printf("create efd in %s err %s\n", __func__, strerror(errno));
initlistensocket(g_efd, port); //初始化监听socket
struct epoll_event events[MAX_EVENTS+1]; //保存已经满足就绪事件的文件描述符数组
printf("server running:port[%d]\n", port);
int checkpos = 0, i;
while (1) {
/* 超时验证,每次测试100个链接,不测试listenfd 当客户端60秒内没有和服务器通信,则关闭此客户端链接 */
long now = time(NULL); //当前时间
for (i = 0; i < 100; i++, checkpos++) { //一次循环检测100个。 使用checkpos控制检测对象
if (checkpos == MAX_EVENTS)
checkpos = 0;
if (g_events[checkpos].status != 1) //不在红黑树 g_efd 上
continue;
long duration = now - g_events[checkpos].last_active; //客户端不活跃的世间
if (duration >= 60) {
close(g_events[checkpos].fd); //关闭与该客户端链接
printf("[fd=%d] timeout\n", g_events[checkpos].fd);
eventdel(g_efd, &g_events[checkpos]); //将该客户端 从红黑树 g_efd移除
}
}
/*监听红黑树g_efd, 将满足的事件的文件描述符加至events数组中, 1秒没有事件满足, 返回 0*/
int nfd = epoll_wait(g_efd, events, MAX_EVENTS+1, 1000);
if (nfd < 0) {
printf("epoll_wait error, exit\n");
break;
}
for (i = 0; i < nfd; i++) {
/*使用自定义结构体myevent_s类型指针, 接收 联合体data的void *ptr成员*/
struct myevent_s *ev = (struct myevent_s *)events[i].data.ptr;
if ((events[i].events & EPOLLIN) && (ev->events & EPOLLIN)) { //读就绪事件
ev->call_back(ev->fd, events[i].events, ev->arg);
//lfd EPOLLIN
}
if ((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT)) { //写就绪事件
ev->call_back(ev->fd, events[i].events, ev->arg);
}
}
}
/* 退出前释放所有资源 */
return 0;
}