scikit-learn中的主成分分析(PCA)的使用

1、函数原型及参数说明

class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)

参数说明:

n_components:  
意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n
类型:int 或者 string,缺省时默认为None,所有成分被保留。
          赋值为int,比如n_components=1,将把原始数据降到一个维度。
          赋值为string,比如n_components='mle',将自动选取特征个数n,使得满足所要求的方差百分比。

copy:

类型:bool,True或者False,缺省时默认为True。

意义:表示是否在运行算法时,将原始训练数据复制一份。

        若为True,则运行PCA算法后,原始训练数据的值不会有任何改变,因为是在原始数据的副本上进行运算;

        若为False,则运行PCA算法后,原始训练数据的值会改,因为是在原始数据上进行降维计算。

whiten:

类型:bool,缺省时默认为False

意义:白化,使得每个特征具有相同的方差。关于“白化”,可参考:Ufldl教程

2、PCA的对象

components_ :返回具有最大方差的成分。
explained_variance_ratio_:返回 所保留的n个成分各自的方差百分比。
n_components_:返回所保留的成分个数n。
mean_:
noise_variance_:

3、PCA对象的方法

fit(X,y=None)

fit()可以说是scikit-learn中通用的方法,每个需要训练的算法都会有fit()方法,它其实就是算法中的“训练”这一步骤。因为PCA是无监督学习算法,此处y自然等于None。
fit(X),表示用数据X来训练PCA模型。
函数返回值:调用fit方法的对象本身。比如pca.fit(X),表示用X对pca这个对象进行训练。
fit_transform(X)
用X来训练PCA模型,同时返回降维后的数据。
newX=pca.fit_transform(X),newX就是降维后的数据。

inverse_transform()

将降维后的数据转换成原始数据,X=pca.inverse_transform(newX)

 

transform(X)

将数据X转换成降维后的数据。当模型训练好后,对于新输入的数据,都可以用transform方法来降维。
此外,还有get_covariance()、get_precision()、get_params(deep=True)、score(X, y=None)等方法,以后用到再补充吧。

4、举例

以一组二维的数据data为例,data如下,一共12个样本(x,y),其实就是分布在直线y=x上的点,并且聚集在x=1、2、3、4上,各3个。

>>> data
array([[ 1.  ,  1.  ],
       [ 0.9 ,  0.95],
       [ 1.01,  1.03],
       [ 2.  ,  2.  ],
       [ 2.03,  2.06],
       [ 1.98,  1.89],
       [ 3.  ,  3.  ],
       [ 3.03,  3.05],
       [ 2.89,  3.1 ],
       [ 4.  ,  4.  ],
       [ 4.06,  4.02],
       [ 3.97,  4.01]])

data这组数据,有两个特征,因为两个特征是近似相等的,所以用一个特征就能表示了,即可以降到一维。下面就来看看怎么用sklearn中的PCA算法包。

(1)n_components设置为1,copy默认为True,可以看到原始数据data并未改变,newData是一维的。

>>> from sklearn.decomposition import PCA 
>>> pca=PCA(n_components=1)
>>> newData=pca.fit_transform(data)
>>> newData
array([[-2.12015916],
       [-2.22617682],
       [-2.09185561],
       [-0.70594692],
       [-0.64227841],
       [-0.79795758],
       [ 0.70826533],
       [ 0.76485312],
       [ 0.70139695],
       [ 2.12247757],
       [ 2.17900746],
       [ 2.10837406]])
>>> data
array([[ 1.  ,  1.  ],
       [ 0.9 ,  0.95],
       [ 1.01,  1.03],
       [ 2.  ,  2.  ],
       [ 2.03,  2.06],
       [ 1.98,  1.89],
       [ 3.  ,  3.  ],
       [ 3.03,  3.05],
       [ 2.89,  3.1 ],
       [ 4.  ,  4.  ],
       [ 4.06,  4.02],
       [ 3.97,  4.01]])

(2)将copy设置为False,原始数据data将发生改变。

>>> pca=PCA(n_components=1,copy=False)
>>> newData=pca.fit_transform(data)
>>> data
array([[-1.48916667, -1.50916667],
       [-1.58916667, -1.55916667],
       [-1.47916667, -1.47916667],
       [-0.48916667, -0.50916667],
       [-0.45916667, -0.44916667],
       [-0.50916667, -0.61916667],
       [ 0.51083333,  0.49083333],
       [ 0.54083333,  0.54083333],
       [ 0.40083333,  0.59083333],
       [ 1.51083333,  1.49083333],
       [ 1.57083333,  1.51083333],
       [ 1.48083333,  1.50083333]])

(3)n_components设置为'mle',看看效果,自动降到了1维。

>>> pca=PCA(n_components='mle')
>>> newData=pca.fit_transform(data)
>>> newData
array([[-2.12015916],
       [-2.22617682],
       [-2.09185561],
       [-0.70594692],
       [-0.64227841],
       [-0.79795758],
       [ 0.70826533],
       [ 0.76485312],
       [ 0.70139695],
       [ 2.12247757],
       [ 2.17900746],
       [ 2.10837406]])

(4)对象的属性值

>>> pca.n_components
1
>>> pca.explained_variance_ratio_
array([ 0.99910873])
>>> pca.explained_variance_
array([ 2.55427003])
>>> pca.get_params

我们所训练的pca对象的n_components值为1,即保留1个特征,该特征的方差为2.55427003,占所有特征的方差百分比为0.99910873,意味着几乎保留了所有的信息。get_params返回各个参数的值。

(5)对象的方法

>>> newA=pca.transform(A)

对新的数据A,用已训练好的pca模型进行降维。

(6)设置参数

>>> pca.set_params(copy=False)
PCA(copy=False, n_components=1, whiten=False)

设置参数。

参考:

scikit-learn官网样例:http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA

博文:http://blog.csdn.net/u012162613/article/details/42192293、http://www.ishowcode.com/ai/ml/scikit-learn-pca/

你可能感兴趣的:(scikit-learn中的主成分分析(PCA)的使用)